-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmain.py
222 lines (194 loc) · 7.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import random
import argparse
import pandas as pd
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
from transformers import get_linear_schedule_with_warmup
from model import BertModel, MLP
from utils import DataPrecessForSentence, correct_predictions, set_seed, split_dataset
from betty.engine import Engine
from betty.problems import ImplicitProblem
from betty.configs import Config, EngineConfig
parser = argparse.ArgumentParser(description="Meta_Weight_Net")
parser.add_argument("--baseline", action="store_true")
parser.add_argument("--precision", type=str, default="fp32")
parser.add_argument("--strategy", type=str, default="default")
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--rollback", action="store_true")
parser.add_argument("--retrain", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--meta_net_hidden_size", type=int, default=500)
parser.add_argument("--meta_net_num_layers", type=int, default=1)
parser.add_argument("--model_name", type=str, default="roberta-large")
parser.add_argument("--lr", type=float, default=1e-5)
parser.add_argument("--patience", type=int, default=0)
parser.add_argument("--weight_decay", type=float, default=5e-3)
parser.add_argument("--hypergradient", type=str, default="darts")
parser.add_argument("--meta_lr", type=float, default=1e-5)
parser.add_argument("--meta_weight_decay", type=float, default=0)
parser.add_argument("--batch_size", type=int, default=120)
parser.add_argument("--imbalance_factor", type=int, default=20)
parser.add_argument("--max_seq_len", type=int, default=50)
parser.add_argument("--train_iters", type=int, default=750)
parser.add_argument("--warmup_iters", type=int, default=250)
parser.add_argument("--valid_step", type=int, default=50)
parser.add_argument("--unroll_steps", type=int, default=5)
args = parser.parse_args()
print(args)
device = "cuda" if torch.cuda.is_available() else "cpu"
set_seed(args.seed)
data_path = "./data/"
train_df = pd.read_csv(
os.path.join(data_path, "train.tsv"),
sep="\t",
header=None,
names=["similarity", "s1"],
)
dev_df = pd.read_csv(
os.path.join(data_path, "dev.tsv"),
sep="\t",
header=None,
names=["similarity", "s1"],
)
test_df = pd.read_csv(
os.path.join(data_path, "test.tsv"),
sep="\t",
header=None,
names=["similarity", "s1"],
)
# Finetune
bertmodel = BertModel(model_name=args.model_name, requires_grad=True)
tokenizer = bertmodel.tokenizer
train_data = DataPrecessForSentence(tokenizer, train_df, max_seq_len=args.max_seq_len)
train_data, meta_data = split_dataset(
train_data, imbalance_factor=args.imbalance_factor
)
if not args.retrain:
datasets = {"train": train_data, "meta": meta_data}
torch.save(datasets, "datasets.pt")
else:
datasets = torch.load("datasets.pt")
train_data = datasets["train"]
meta_data = datasets["meta"]
train_loader = DataLoader(train_data, shuffle=True, batch_size=args.batch_size)
epoch_len = len(train_loader)
optimizer = torch.optim.AdamW(
bertmodel.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_training_steps=args.train_iters, num_warmup_steps=args.warmup_iters
)
# Reweight
meta_net = MLP(
in_size=1,
hidden_size=args.meta_net_hidden_size,
num_layers=args.meta_net_num_layers,
)
meta_loader = DataLoader(meta_data, shuffle=True, batch_size=args.batch_size)
meta_optimizer = torch.optim.Adam(
meta_net.parameters(),
lr=args.meta_lr,
weight_decay=args.meta_weight_decay,
)
# valid
dev_data = DataPrecessForSentence(tokenizer, dev_df, max_seq_len=args.max_seq_len)
dev_loader = DataLoader(dev_data, shuffle=True, batch_size=args.batch_size)
# test
test_data = DataPrecessForSentence(tokenizer, test_df, max_seq_len=args.max_seq_len)
test_loader = DataLoader(test_data, shuffle=False, batch_size=args.batch_size)
class Finetune(ImplicitProblem):
def training_step(self, batch):
seqs, masks, segments, labels = batch
_, logits, probs = self.module(seqs, masks, segments, labels)
loss_vector = F.cross_entropy(logits.view(-1, 2), labels, reduction="none")
if args.baseline:
loss = torch.mean(loss_vector)
else:
loss_vector_reshape = torch.reshape(loss_vector, (-1, 1))
weight = self.reweight(loss_vector_reshape.detach())
loss = torch.mean(weight * loss_vector_reshape)
return loss
class Reweight(ImplicitProblem):
def training_step(self, batch):
seqs, masks, segments, labels = batch
loss, *_ = self.finetune(seqs, masks, segments, labels)
return loss
best_acc = -1
class BERTEngine(Engine):
@torch.no_grad()
def validation(self):
running_loss = 0.0
running_accuracy = 0.0
all_prob = []
all_labels = []
global best_acc
for (
batch_seqs,
batch_seq_masks,
batch_seq_segments,
batch_labels,
) in dev_loader:
seqs = batch_seqs.to(device)
masks = batch_seq_masks.to(device)
segments = batch_seq_segments.to(device)
labels = batch_labels.to(device)
loss, logits, probabilities = self.finetune(seqs, masks, segments, labels)
running_loss += loss.item()
running_accuracy += correct_predictions(probabilities, labels)
all_prob.extend(probabilities[:, 1].cpu().numpy())
all_labels.extend(batch_labels)
valid_loss = running_loss / len(dev_loader)
valid_accuracy = running_accuracy / (len(dev_loader.dataset))
if best_acc < valid_accuracy:
best_acc = valid_accuracy
if not args.retrain and not args.baseline:
torch.save(self.finetune.state_dict(), f"save/net_{self.global_step}.pt")
torch.save(
self.reweight.state_dict(), f"save/meta_net_{self.global_step}.pt"
)
return {"loss": valid_loss, "acc": valid_accuracy, "best_acc": best_acc}
engine_config = EngineConfig(
train_iters=args.train_iters,
valid_step=args.valid_step,
strategy=args.strategy,
)
finetune_config = Config(
type=args.hypergradient,
precision=args.precision,
retain_graph=True,
# gradient_clipping=5.0,
log_step=args.valid_step,
unroll_steps=args.unroll_steps,
)
reweight_config = Config(type="darts", precision=args.precision)
finetune = Finetune(
name="finetune",
module=bertmodel,
optimizer=optimizer,
scheduler=scheduler,
train_data_loader=train_loader,
config=finetune_config,
)
reweight = Reweight(
name="reweight",
module=meta_net,
optimizer=meta_optimizer,
train_data_loader=meta_loader,
config=reweight_config,
)
if args.baseline or args.retrain:
problems = [finetune]
u2l, l2u = {}, {}
else:
problems = [reweight, finetune]
u2l = {reweight: [finetune]}
l2u = {finetune: [reweight]}
dependencies = {"l2u": l2u, "u2l": u2l}
engine = BERTEngine(
config=engine_config,
problems=problems,
dependencies=dependencies,
)
engine.run()