-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmain.py
335 lines (272 loc) · 9.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import argparse
import os
import torch
import torch.nn.functional as F
import torch.optim as optim
from betty.engine import Engine
from betty.problems import ImplicitProblem
from betty.configs import Config, EngineConfig
from utils.utils import set_random_seed
from utils.data_transform import transform
from dalib.vision.datasets import Office31, OfficeHome
from model.resnet import build_model, build_optimizer, MLP
domainIdxDict = {"Ar": 0, "Cl": 1, "Pr": 2, "Rw": 3, "A": 0, "D": 1, "W": 2}
def argument_parser():
parser = argparse.ArgumentParser(description="regularize the target by the source")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--source_domain", type=str, default="Cl")
parser.add_argument("--target_domain", type=str, default="Ar")
parser.add_argument("--features_lr", type=float, default=1e-4)
parser.add_argument("--classifier_lr", type=float, default=1e-3)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--random_seed", type=int, default=0)
parser.add_argument("--dataset", type=str, default="officehome")
parser.add_argument("--data_dir", type=str, metavar="PATH", default="./data")
parser.add_argument("--lam", type=float, help="lambda", default=7e-3)
parser.add_argument("--gamma", type=float, default=0.1)
parser.add_argument("--step_size", type=int, default=400)
parser.add_argument("--train_portion", type=float, default=0.9)
parser.add_argument("--baseline", action="store_true", default=False)
return parser
parser = argument_parser()
args = parser.parse_args()
set_random_seed(args.random_seed)
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
# Dataset
train_transform = transform(train=True)
test_transform = transform(train=False)
data_root = os.path.join(args.data_dir, args.dataset)
if args.dataset == "office31":
getDataset = Office31
elif args.dataset == "officehome":
getDataset = OfficeHome
print(f"train source_task: {args.source_domain}")
train_source_dataset = getDataset(
root=data_root,
task=args.source_domain + "_train",
download=True,
transform=train_transform,
)
print(f"train target_task: {args.target_domain}")
train_target_dataset = getDataset(
root=data_root,
task=args.target_domain + "_train",
download=True,
transform=train_transform,
)
valid_target_dataset = getDataset(
root=data_root,
task=args.target_domain + "_train",
download=True,
transform=test_transform,
)
test_target_dataset = getDataset(
root=data_root,
task=args.target_domain + "_test",
download=True,
transform=test_transform,
)
train_loader = torch.utils.data.DataLoader(
train_target_dataset,
batch_size=args.batch_size,
num_workers=6,
shuffle=True,
pin_memory=True,
drop_last=False,
)
valid_loader = torch.utils.data.DataLoader(
valid_target_dataset,
batch_size=args.batch_size,
num_workers=6,
shuffle=True,
pin_memory=True,
drop_last=False,
)
test_loader = torch.utils.data.DataLoader(
test_target_dataset,
batch_size=args.batch_size,
num_workers=6,
shuffle=False,
pin_memory=True,
drop_last=False,
)
train_source_loader = torch.utils.data.DataLoader(
train_source_dataset,
batch_size=args.batch_size,
num_workers=6,
shuffle=True,
pin_memory=True,
drop_last=True,
)
class ReweightingModule(torch.nn.Module):
def __init__(self, dim):
super(ReweightingModule, self).__init__()
self.weight = torch.nn.Parameter(torch.zeros(dim))
def forward(self):
return self.weight
class Pretraining(ImplicitProblem):
def forward(self, x):
return self.module(x)
def training_step(self, batch):
inputs, targets, _ = batch
outs = self.module(inputs)
loss_raw = F.cross_entropy(outs, targets, reduction="none")
# reweighting
if args.baseline:
loss = torch.mean(loss_raw)
else:
logit = self.reweight(inputs)
weight = torch.sigmoid(logit)
loss = torch.mean(loss_raw * weight) # / weight.detach().mean().item()
return loss
def configure_train_data_loader(self):
return train_source_loader
def configure_module(self):
return build_model(num_classes=train_source_dataset.num_classes)
def configure_optimizer(self):
return build_optimizer(self.module, args)
def configure_scheduler(self):
return optim.lr_scheduler.StepLR(
self.optimizer, step_size=args.step_size, gamma=args.gamma
)
def param_groups(self):
param_groups = [
{
"params": [
param
for name, param in self.module.named_parameters()
if "fc" not in name
],
"lr": args.features_lr,
},
{"params": self.module.fc.parameters(), "lr": args.classifier_lr},
]
return param_groups
class Finetuning(ImplicitProblem):
def forward(self, x):
return self.module(x)
def training_step(self, batch):
inputs, targets, _ = batch
outs = self(inputs)
ce_loss = F.cross_entropy(outs, targets, reduction="none")
ce_loss = torch.mean(ce_loss)
reg_loss = self.reg_loss()
return ce_loss + reg_loss
def reg_loss(self):
loss = 0
for (n1, p1), (n2, p2) in zip(
self.module.named_parameters(), self.pretrain.module.named_parameters()
):
lam = 0 if "fc" in n1 else args.lam
loss = loss + lam * (p1 - p2).pow(2).sum()
return loss
def configure_train_data_loader(self):
return train_loader
def configure_module(self):
return build_model(num_classes=test_target_dataset.num_classes)
def configure_optimizer(self):
return build_optimizer(self.module, args)
def configure_scheduler(self):
return optim.lr_scheduler.StepLR(
self.optimizer, step_size=args.step_size, gamma=args.gamma
)
def param_groups(self):
param_groups = [
{
"params": [
param
for name, param in self.module.named_parameters()
if "fc" not in name
],
"lr": args.features_lr,
},
{"params": self.module.fc.parameters(), "lr": args.classifier_lr},
]
return param_groups
class Reweighting(ImplicitProblem):
def forward(self, x):
out = self.module(x).squeeze()
return out
def training_step(self, batch):
inputs, targets, _ = batch
outs = self.finetune(inputs)
loss = F.cross_entropy(outs, targets)
reg_loss = self.reg_loss()
return loss + reg_loss
def reg_loss(self):
loss = 0
for (n1, p1), (n2, p2) in zip(
self.finetune.module.named_parameters(),
self.pretrain.module.named_parameters(),
):
lam = 0 if "fc" in n1 else args.lam
loss = loss + lam * (p1 - p2).pow(2).sum()
return loss
def configure_train_data_loader(self):
return valid_loader
def configure_module(self):
return build_model(num_classes=1)
def configure_optimizer(self):
return build_optimizer(self.module, args)
def configure_scheduler(self):
return optim.lr_scheduler.StepLR(
self.optimizer, step_size=args.step_size, gamma=args.gamma
)
def param_groups(self):
param_groups = [
{
"params": [
param
for name, param in self.module.named_parameters()
if "fc" not in name
],
"lr": args.features_lr,
},
{"params": self.module.fc.parameters(), "lr": args.classifier_lr},
]
return param_groups
best_acc = -1
class LBIEngine(Engine):
@torch.no_grad()
def validation(self):
global best_acc
correct = 0
loss = 0
total = 0
for batch in test_loader:
inputs = batch[0].to(device)
targets = batch[1].to(device)
outputs = self.finetune(inputs)
loss += F.cross_entropy(outputs, targets, reduction="sum")
correct += (outputs.argmax(dim=1) == targets).float().sum().item()
total += inputs.size(0)
acc = correct / total
avgloss = loss / total
if best_acc < acc:
best_acc = acc
return {"loss": avgloss, "acc": acc, "best_acc": best_acc}
# Define configs
reweight_config = Config(type="darts", retain_graph=True)
finetune_config = Config(type="darts", unroll_steps=1, allow_unused=False)
pretrain_config = Config(type="darts", unroll_steps=1, allow_unused=False)
engine_config = EngineConfig(valid_step=20, train_iters=1000, roll_back=False)
reweight = Reweighting(name="reweight", config=reweight_config)
finetune = Finetuning(name="finetune", config=finetune_config)
pretrain = Pretraining(name="pretrain", config=pretrain_config)
if args.baseline:
problems = [finetune, pretrain]
else:
problems = [reweight, finetune, pretrain]
if args.baseline:
l2u = {pretrain: [finetune]}
u2l = {}
else:
u2l = {reweight: [pretrain]}
l2u = {pretrain: [finetune, reweight], finetune: [reweight]}
dependencies = {"u2l": u2l, "l2u": l2u}
engine = LBIEngine(config=engine_config, problems=problems, dependencies=dependencies)
engine.run()
print("=" * 30)
print(f"{args.source_domain} --> {args.target_domain} || best_acc: {best_acc}")
print("=" * 30)