-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathanalysis_noise.py
162 lines (137 loc) · 4.9 KB
/
analysis_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
import argparse
import torch
import torch.nn.functional as F
import torch.optim as optim
from model import *
from data import *
from utils import *
from betty.engine import Engine
from betty.problems import ImplicitProblem
from betty.configs import Config, EngineConfig
parser = argparse.ArgumentParser(description="Meta_Weight_Net")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--precision", type=str, default="fp32")
parser.add_argument("--strategy", type=str, default="default")
parser.add_argument("--rollback", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--meta_net_hidden_size", type=int, default=100)
parser.add_argument("--meta_net_num_layers", type=int, default=1)
parser.add_argument("--lr", type=float, default=0.1)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--dampening", type=float, default=0.0)
parser.add_argument("--nesterov", type=bool, default=False)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--meta_lr", type=float, default=1e-5)
parser.add_argument("--meta_weight_decay", type=float, default=0.0)
parser.add_argument("--dataset", type=str, default="cifar10")
parser.add_argument("--num_meta", type=int, default=1000)
parser.add_argument("--imbalanced_factor", type=int, default=None)
parser.add_argument("--corruption_type", type=str, default=None)
parser.add_argument("--corruption_ratio", type=float, default=0.0)
parser.add_argument("--batch_size", type=int, default=200)
parser.add_argument("--max_epoch", type=int, default=120)
parser.add_argument("--meta_interval", type=int, default=1)
parser.add_argument("--paint_interval", type=int, default=20)
args = parser.parse_args()
print(args)
set_seed(args.seed)
resume_indexes = torch.load("train_index.pt")
resume_labels = torch.load("train_label.pt")
orig_labels = torch.load("orig_label.pt")
(
train_dataloader,
meta_dataloader,
test_dataloader,
imbalanced_num_list,
) = build_dataloader(
seed=args.seed,
dataset=args.dataset,
num_meta_total=args.num_meta,
imbalanced_factor=args.imbalanced_factor,
corruption_type=args.corruption_type,
corruption_ratio=args.corruption_ratio,
batch_size=args.batch_size,
resume_idxes=resume_indexes,
resume_labels=resume_labels,
analysis=True,
)
net = ResNet32(args.dataset == "cifar10" and 10 or 100)
meta_net = MLP(
hidden_size=args.meta_net_hidden_size, num_layers=args.meta_net_num_layers
)
net.cuda()
meta_net.cuda()
correct_idx = []
noise_idx = []
for idx, (t, f) in enumerate(zip(orig_labels, resume_labels)):
if t == f:
correct_idx.append(idx)
else:
noise_idx.append(idx)
print("noise ratio:", 1 - len(correct_idx) / len(orig_labels))
checkpoints = [
500,
1000,
1500,
2000,
2500,
3000,
3500,
4000,
4500,
5000,
5500,
6000,
6500,
7000,
7500,
8000,
8500,
9000,
]
# checkpoints = [5000,6000,6500,7000,7500]
sample_weights = 0
with torch.no_grad():
for ckpt in checkpoints:
net.eval()
meta_net.eval()
net.load_state_dict(torch.load(f"{args.dataset}/net_{ckpt}.pt")["module"])
meta_net.load_state_dict(
torch.load(f"{args.dataset}/meta_net_{ckpt}.pt")["module"]
)
importance_weight = np.zeros((10))
frequency = np.zeros((10))
sample_weight = []
for data, label in train_dataloader:
data, label = data.cuda(), label.cuda()
out = net(data)
loss = F.cross_entropy(out, label.long(), reduction="none")
loss_vector = torch.reshape(loss, (-1, 1))
weight = meta_net(loss_vector).squeeze()
sample_weight.append(weight.cpu().numpy())
print("\n==================================================")
print("checkpoint:", ckpt)
sample_weight = np.concatenate(sample_weight)
sample_weights += sample_weight / len(checkpoints)
noise_weight = sample_weight[noise_idx]
correct_weight = sample_weight[correct_idx]
print("correct weight:", np.mean(correct_weight), len(correct_weight))
print("noise weight:", np.mean(noise_weight), len(noise_weight))
print("\n==================================================")
final_noise_weight = sample_weights[noise_idx]
final_correct_weight = sample_weights[correct_idx]
print("final correct weight:", np.mean(final_correct_weight))
print("final noise weight:", np.mean(final_noise_weight))
n, bins, patches = plt.hist(
x=final_correct_weight, bins="auto", color="r", alpha=0.7, rwidth=0.85
)
n, bins, patches = plt.hist(
x=final_noise_weight, bins=bins, color="b", alpha=0.7, rwidth=0.85
)
plt.xlabel("weight")
plt.ylabel("frequency")
plt.show()