-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathdata.py
168 lines (144 loc) · 5.43 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import copy
import numpy as np
import torch
import torchvision.datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
def uniform_corruption(corruption_ratio, num_classes):
eye = np.eye(num_classes)
noise = np.full((num_classes, num_classes), 1 / num_classes)
corruption_matrix = eye * (1 - corruption_ratio) + noise * corruption_ratio
return corruption_matrix
def flip1_corruption(corruption_ratio, num_classes):
corruption_matrix = np.eye(num_classes) * (1 - corruption_ratio)
row_indices = np.arange(num_classes)
for i in range(num_classes):
corruption_matrix[i][
np.random.choice(row_indices[row_indices != i])
] = corruption_ratio
return corruption_matrix
def flip2_corruption(corruption_ratio, num_classes):
corruption_matrix = np.eye(num_classes) * (1 - corruption_ratio)
row_indices = np.arange(num_classes)
for i in range(num_classes):
corruption_matrix[i][
np.random.choice(row_indices[row_indices != i], 2, replace=False)
] = (corruption_ratio / 2)
return corruption_matrix
def build_dataloader(
seed=1,
dataset="cifar10",
num_meta_total=1000,
imbalanced_factor=None,
corruption_type=None,
corruption_ratio=0.0,
batch_size=100,
resume_idxes=None,
resume_labels=None,
sampler=None,
analysis=False,
):
np.random.seed(seed)
normalize = transforms.Normalize(
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]],
)
train_transforms = transforms.Compose(
[
transforms.RandomCrop(32, padding=4, padding_mode="reflect"),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
)
test_transforms = transforms.Compose(
[
transforms.ToTensor(),
normalize,
]
)
if analysis:
train_transforms = test_transforms
dataset_list = {
"cifar10": torchvision.datasets.CIFAR10,
"cifar100": torchvision.datasets.CIFAR100,
}
corruption_list = {
"uniform": uniform_corruption,
"flip1": flip1_corruption,
"flip2": flip2_corruption,
}
train_dataset = dataset_list[dataset](
root="../data", train=True, download=True, transform=train_transforms
)
test_dataset = dataset_list[dataset](
root="../data", train=False, transform=test_transforms
)
num_classes = len(train_dataset.classes)
num_meta = int(num_meta_total / num_classes)
index_to_meta = []
index_to_train = []
if imbalanced_factor is not None:
imbalanced_num_list = []
sample_num = int((len(train_dataset.targets) - num_meta_total) / num_classes)
for class_index in range(num_classes):
imbalanced_num = sample_num / (
imbalanced_factor ** (class_index / (num_classes - 1))
)
imbalanced_num_list.append(int(imbalanced_num))
np.random.shuffle(imbalanced_num_list)
print(imbalanced_num_list)
else:
imbalanced_num_list = None
for class_index in range(num_classes):
index_to_class = [
index
for index, label in enumerate(train_dataset.targets)
if label == class_index
]
np.random.shuffle(index_to_class)
index_to_meta.extend(index_to_class[:num_meta])
index_to_class_for_train = index_to_class[num_meta:]
if imbalanced_num_list is not None:
index_to_class_for_train = index_to_class_for_train[
: imbalanced_num_list[class_index]
]
index_to_train.extend(index_to_class_for_train)
if resume_idxes is not None:
index_to_train = resume_idxes
else:
torch.save(index_to_train, "train_index.pt")
torch.save(imbalanced_num_list, "imbalance.pt")
meta_dataset = copy.deepcopy(train_dataset)
train_dataset.data = train_dataset.data[index_to_train]
train_dataset.targets = list(np.array(train_dataset.targets)[index_to_train])
meta_dataset.data = meta_dataset.data[index_to_meta]
meta_dataset.targets = list(np.array(meta_dataset.targets)[index_to_meta])
torch.save(train_dataset.targets, "orig_label.pt")
if corruption_type is not None:
corruption_matrix = corruption_list[corruption_type](
corruption_ratio, num_classes
)
print(corruption_matrix)
for index in range(len(train_dataset.targets)):
p = corruption_matrix[train_dataset.targets[index]]
train_dataset.targets[index] = np.random.choice(num_classes, p=p)
if resume_labels is not None:
train_dataset.targets = resume_labels
else:
torch.save(train_dataset.targets, "train_label.pt")
train_sampler = None
if analysis:
train_sampler = SequentialSampler(train_dataset)
elif sampler is not None:
train_sampler = sampler
else:
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset, batch_size=batch_size, pin_memory=True, sampler=train_sampler
)
meta_dataloader = DataLoader(
meta_dataset, batch_size=batch_size, shuffle=True, pin_memory=True
)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, pin_memory=True)
return train_dataloader, meta_dataloader, test_dataloader, imbalanced_num_list