-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmain.py
209 lines (174 loc) · 6.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
from collections import Counter
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import WeightedRandomSampler
from model import *
from data import *
from utils import *
from betty.engine import Engine
from betty.problems import ImplicitProblem, MetaIterativeProblem
from betty.configs import Config, EngineConfig
parser = argparse.ArgumentParser(description="Meta_Weight_Net")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--precision", type=str, default="fp32")
parser.add_argument("--strategy", type=str, default="default")
parser.add_argument("--rollback", action="store_true")
parser.add_argument("--baseline", action="store_true")
parser.add_argument("--retrain", action="store_true")
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--meta_net_hidden_size", type=int, default=100)
parser.add_argument("--meta_net_num_layers", type=int, default=1)
parser.add_argument("--lr", type=float, default=0.1)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--dampening", type=float, default=0.0)
parser.add_argument("--nesterov", type=bool, default=False)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--meta_lr", type=float, default=1e-5)
parser.add_argument("--meta_weight_decay", type=float, default=0.0)
parser.add_argument("--dataset", type=str, default="cifar10")
parser.add_argument("--num_meta", type=int, default=1000)
parser.add_argument("--imbalanced_factor", type=int, default=None)
parser.add_argument("--corruption_type", type=str, default=None)
parser.add_argument("--corruption_ratio", type=float, default=0.0)
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--max_epoch", type=int, default=120)
parser.add_argument("--meta_interval", type=int, default=1)
parser.add_argument("--paint_interval", type=int, default=20)
args = parser.parse_args()
print(args)
set_seed(args.seed)
sampler = None
resume_idxes = None
resume_labels = None
if args.retrain:
sample_weight = torch.load("reweight.pt")
resume_idxes = torch.load("train_index.pt")
resume_labels = torch.load("train_label.pt")
sampler = WeightedRandomSampler(sample_weight, len(sample_weight))
(
train_dataloader,
meta_dataloader,
test_dataloader,
imbalanced_num_list,
) = build_dataloader(
seed=args.seed,
dataset=args.dataset,
num_meta_total=args.num_meta,
imbalanced_factor=args.imbalanced_factor,
corruption_type=args.corruption_type,
corruption_ratio=args.corruption_ratio,
batch_size=args.batch_size,
resume_idxes=resume_idxes,
resume_labels=resume_labels,
sampler=sampler,
)
print(Counter(train_dataloader.dataset.targets))
class Outer(ImplicitProblem):
def forward(self, x):
return self.module(x)
def training_step(self, batch):
inputs, labels = batch
outputs = self.inner(inputs)
loss = F.cross_entropy(outputs, labels.long())
acc = (outputs.argmax(dim=1) == labels.long()).float().mean().item() * 100
return {"loss": loss, "acc": acc}
def configure_train_data_loader(self):
return meta_dataloader
def configure_module(self):
meta_net = MLP(
hidden_size=args.meta_net_hidden_size, num_layers=args.meta_net_num_layers
)
return meta_net
def configure_optimizer(self):
meta_optimizer = optim.Adam(
self.module.parameters(),
lr=args.meta_lr,
weight_decay=args.meta_weight_decay,
)
return meta_optimizer
class Inner(ImplicitProblem):
def forward(self, x):
return self.module(x)
def training_step(self, batch):
inputs, labels = batch
outputs = self.forward(inputs)
if args.baseline or args.retrain:
return F.cross_entropy(outputs, labels.long())
loss_vector = F.cross_entropy(outputs, labels.long(), reduction="none")
loss_vector_reshape = torch.reshape(loss_vector, (-1, 1))
weight = self.outer(loss_vector_reshape.detach())
loss = torch.mean(weight * loss_vector_reshape)
return loss
def configure_train_data_loader(self):
return train_dataloader
def configure_module(self):
return ResNet32(args.dataset == "cifar10" and 10 or 100)
def configure_optimizer(self):
optimizer = optim.SGD(
self.module.parameters(),
lr=args.lr,
momentum=args.momentum,
dampening=args.dampening,
weight_decay=args.weight_decay,
nesterov=args.nesterov,
)
return optimizer
def configure_scheduler(self):
scheduler = optim.lr_scheduler.MultiStepLR(
self.optimizer, milestones=[10000, 13000], gamma=0.1
)
return scheduler
best_acc = -1
class ReweightingEngine(Engine):
@torch.no_grad()
def validation(self):
correct = 0
total = 0
global best_acc
for x, target in test_dataloader:
x, target = x.to(args.device), target.to(args.device)
with torch.no_grad():
out = self.inner(x)
correct += (out.argmax(dim=1) == target).sum().item()
total += x.size(0)
acc = correct / total * 100
if best_acc < acc:
best_acc = acc
if not args.retrain and not args.baseline:
torch.save(
self.inner.state_dict(), f"{args.dataset}/net_{self.global_step}.pt"
)
torch.save(
self.outer.state_dict(),
f"{args.dataset}/meta_net_{self.global_step}.pt",
)
return {"acc": acc, "best_acc": best_acc}
outer_config = Config(
type="darts", precision=args.precision, log_step=100, retain_graph=True
)
inner_config = Config(type="darts", precision=args.precision, unroll_steps=1)
engine_config = EngineConfig(
train_iters=15000,
valid_step=500,
strategy=args.strategy,
roll_back=args.rollback,
logger_type="tensorboard",
)
outer = Outer(name="outer", config=outer_config)
inner = Inner(name="inner", config=inner_config)
if args.baseline or args.retrain:
problems = [inner]
u2l, l2u = {}, {}
else:
problems = [outer, inner]
u2l = {outer: [inner]}
l2u = {inner: [outer]}
dependencies = {"l2u": l2u, "u2l": u2l}
engine = ReweightingEngine(
config=engine_config, problems=problems, dependencies=dependencies
)
engine.run()
print(f"IF {args.imbalanced_factor} || Best Acc.: {best_acc}")