-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain_search.py
179 lines (154 loc) · 5.54 KB
/
train_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os, time, glob
import logging
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch import optim
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from betty.engine import Engine
from betty.configs import Config, EngineConfig
from betty.problems import ImplicitProblem
from model_search import Network, Architecture
import utils
parser = argparse.ArgumentParser("cifar")
parser.add_argument(
"--data", type=str, default="../data", help="location of the data corpus"
)
parser.add_argument("--batchsz", type=int, default=64, help="batch size")
parser.add_argument("--lr", type=float, default=0.025, help="init learning rate")
parser.add_argument("--lr_min", type=float, default=0.001, help="min learning rate")
parser.add_argument("--momentum", type=float, default=0.9, help="momentum")
parser.add_argument("--wd", type=float, default=3e-4, help="weight decay")
parser.add_argument("--report_freq", type=int, default=100, help="report frequency")
parser.add_argument("--gpu", type=int, default=0, help="gpu device id")
parser.add_argument("--epochs", type=int, default=50, help="num of training epochs")
parser.add_argument("--init_ch", type=int, default=16, help="num of init channels")
parser.add_argument("--layers", type=int, default=8, help="total number of layers")
parser.add_argument("--cutout", action="store_true", default=False, help="use cutout")
parser.add_argument("--cutout_len", type=int, default=16, help="cutout length")
parser.add_argument(
"--drop_path_prob", type=float, default=0.3, help="drop path probability"
)
parser.add_argument(
"--train_portion", type=float, default=0.5, help="portion of training/val splitting"
)
parser.add_argument(
"--arch_lr", type=float, default=3e-4, help="learning rate for arch encoding"
)
parser.add_argument(
"--arch_wd", type=float, default=1e-3, help="weight decay for arch encoding"
)
parser.add_argument("--arch_steps", type=int, default=4, help="architecture steps")
parser.add_argument("--unroll_steps", type=int, default=1, help="unrolling steps")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device("cuda")
train_transform, valid_transform = utils.data_transforms_cifar10(args)
train_data = dset.CIFAR10(
root=args.data, train=True, download=True, transform=train_transform
)
valid_data = dset.CIFAR10(
root=args.data, train=False, download=True, transform=valid_transform
)
test_queue = torch.utils.data.DataLoader(
valid_data, batch_size=args.batchsz, shuffle=False, pin_memory=True, num_workers=2
)
num_train = len(train_data) # 50000
indices = list(range(num_train))
split = int(np.floor(args.train_portion * num_train))
train_iters = int(
args.epochs
* (num_train * args.train_portion // args.batchsz + 1)
* args.unroll_steps
)
arch_net = Architecture(steps=args.arch_steps)
arch_optimizer = optim.Adam(
arch_net.parameters(),
lr=args.arch_lr,
betas=(0.5, 0.999),
weight_decay=args.arch_wd,
)
arch_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batchsz,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:]),
pin_memory=True,
num_workers=2,
)
criterion = nn.CrossEntropyLoss()
classifier_net = Network(
args.init_ch, 10, args.layers, criterion, steps=args.arch_steps
)
classifier_optimizer = optim.SGD(
classifier_net.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.wd,
)
classifier_scheduler = optim.lr_scheduler.CosineAnnealingLR(
classifier_optimizer, float(train_iters // args.unroll_steps), eta_min=args.lr_min
)
classifier_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batchsz,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
pin_memory=True,
num_workers=2,
)
class Arch(ImplicitProblem):
def training_step(self, batch):
x, target = batch
alphas = self.forward()
loss = self.classifier.module.loss(x, alphas, target)
return loss
class Classifier(ImplicitProblem):
def training_step(self, batch):
x, target = batch
alphas = self.arch()
loss = self.module.loss(x, alphas, target)
return loss
class NASEngine(Engine):
@torch.no_grad()
def validation(self):
corrects = 0
total = 0
for x, target in test_queue:
x, target = x.to(device), target.to(device, non_blocking=True)
alphas = self.arch()
_, correct = self.classifier.module.loss(x, alphas, target, acc=True)
corrects += correct
total += x.size(0)
acc = corrects / total
alphas = self.arch()
torch.save({"genotype": self.classifier.module.genotype(alphas)}, "genotype.t7")
return {"acc": acc}
outer_config = Config(retain_graph=True)
inner_config = Config(type="darts", unroll_steps=args.unroll_steps)
engine_config = EngineConfig(
valid_step=args.report_freq * args.unroll_steps,
train_iters=train_iters,
roll_back=True,
)
outer = Arch(
name="arch",
module=arch_net,
optimizer=arch_optimizer,
train_data_loader=arch_loader,
config=outer_config,
)
inner = Classifier(
name="classifier",
module=classifier_net,
optimizer=classifier_optimizer,
scheduler=classifier_scheduler,
train_data_loader=classifier_loader,
config=inner_config,
)
problems = [outer, inner]
l2u = {inner: [outer]}
u2l = {outer: [inner]}
dependencies = {"l2u": l2u, "u2l": u2l}
engine = NASEngine(config=engine_config, problems=problems, dependencies=dependencies)
engine.run()