-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpy.py
233 lines (211 loc) · 11.1 KB
/
py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from keras.models import Model;
from keras.regularizers import l2,l1,l1_l2;
from keras.optimizers import rmsprop,adam,adagrad,SGD;
from keras.layers import Input,Dense,merge,Dropout,BatchNormalization,\
Activation,Conv2D,MaxPooling1D,MaxPooling2D,AveragePooling2D,Reshape,Flatten,UpSampling2D,Conv2DTranspose;
from keras.layers.advanced_activations import PReLU,LeakyReLU;
import time;import os;import pickle;import random;
from keras.models import Sequential,load_model;import numpy as np;import json;
from keras.callbacks import EarlyStopping,ModelCheckpoint,ReduceLROnPlateau;
from keras.utils.vis_utils import plot_model;from tqdm import tqdm;
DIR=os.getcwd();
def generator_model(small_image_input):
y0=Conv2DTranspose(kernel_size=4,filters=64,strides=(1,1),padding="same",name="generate_conv_1")(small_image_input);
y0=BatchNormalization(name="generate_b1")(y0);
y0 = LeakyReLU(alpha=0.2, name="generate_act1")(y0);
y1=Conv2DTranspose(kernel_size=4,filters=128,strides=(1,1),padding="same",name="generate_conv_2")(y0);
y1=BatchNormalization(name="generate_b2")(y1);
y1 =LeakyReLU(alpha=0.2, name="generate_act2")(y1);
y2=Conv2DTranspose(kernel_size=4,filters=128,strides=(1,1),padding="same",name="generate_conv_3")(y1);
y2=BatchNormalization()(y2);
y2=LeakyReLU(alpha=0.2,name="generate_act3")(y2);
y2=UpSampling2D(size=(2,2),name="generate_ups1")(y2);
y3=Conv2DTranspose(kernel_size=4,filters=128,strides=(1,1),padding="same",name="generate_conv_4")(y2);
y3=BatchNormalization(name="generate_b3")(y3);
y3=LeakyReLU(alpha=0.2,name="generate_act4")(y3);
#y4=UpSampling2D(size=(2,2),name="generate_ups2")(y3);
#y5=Conv2D(kernel_size=3,filters=128,strides=(1,1),padding="same",name="generate_conv_5")(y4);
#y5 = BatchNormalization(name="generate_b4")(y5);
#y5=LeakyReLU(alpha=0.2,name="generate_act6")(y5)
y6=Conv2DTranspose(filters=3,kernel_size=1,strides=(1,1),padding="same",name="generate_conv_6")(y3);
y_final=Activation("tanh",name="generate_act7")(y6);
return Model(inputs=small_image_input,outputs=y_final);
def discriminator_model(large_image_input,nearest_image_input):
image_input=merge([large_image_input,nearest_image_input],mode="concat",concat_axis=-1)
y0=Conv2D(kernel_size=4,filters=32,strides=(1,1),padding="valid",name="discriminator_conv_1")(image_input);
y0=LeakyReLU(alpha=0.2,name="discriminator_act_1")(y0);
y0=Conv2D(kernel_size=4,filters=32,strides=(2,2),padding="valid",name="discriminator_conv_2")(y0);
y0=LeakyReLU(alpha=0.2,name="discriminator_act_2")(y0);
y1=Conv2D(kernel_size=4,filters=64,strides=(1,1),padding="valid",name="discriminator_conv_3")(y0);
y1=LeakyReLU(alpha=0.2,name="discriminator_act_3")(y1);
y1=Conv2D(kernel_size=4,filters=64,strides=(2,2),padding="valid",name="discriminator_conv_4")(y1);
y1=LeakyReLU(alpha=0.2,name="discriminator_act_4")(y1);
#y2=Conv2D(kernel_size=4,filters=256,strides=(1,1),padding="valid",name="discriminator_conv_5")(y1);
#y2=Activation("tanh",name="discriminator_act_5")(y2);
#y2=Conv2D(kernel_size=4,filters=256,strides=(2,2),padding="valid",name="discriminator_conv_6")(y2);
#y2=Activation("tanh",name="discriminator_act_6")(y2);
y5=Flatten(name="discriminator_30")(y1);
y5=Dense(512,name="discriminator_31")(y5);
y5=LeakyReLU(alpha=0.2,name="discriminator_32")(y5);
#y5=Dropout(0.2,name="discriminator_drop1")(y5);
y_final=Dense(1,activation="sigmoid",name="discriminator_33")(y5);
return Model(inputs=[large_image_input,nearest_image_input],outputs=y_final);
def set_trainable(model, key_word, value=True):
layers_list = [layer for layer in model.layers if key_word in layer.name]
for layer in layers_list:
layer.trainable = value
def g_d_together(g_model,d_model,small_image_input,nearest_image_input):
g_output=g_model(small_image_input);
output=d_model([g_output,nearest_image_input]);
return Model(inputs=[small_image_input,nearest_image_input],outputs=output);
#prepare dataset
'''from PIL import Image,ImageDraw,ImageFont;
import random;import os;
import numpy as np;
DIR=os.getcwd();N=96
for count in np.arange(0,1):
img=Image.new("RGB",size=(N,N),color="white");
draw=ImageDraw.Draw(img);
color_list=["blue","red","green"];
object_count=3;
x0=random.randrange(0,N-10);y0=random.randrange(0,N-10);
x1=random.randrange(x0+10,N);y1=random.randrange(y0+10,N);
draw.ellipse([x0,y0,x1,y1],fill=color_list[0]);
x0 = random.randrange(0, N-10);
y0 = random.randrange(0, N-10);
x1 = random.randrange(x0 + 10, N);
y1 = random.randrange(y0 + 10, N);
draw.rectangle([x0,y0,x1,y1],fill=color_list[1])
x0 = random.randrange(0, N-10);
y0 = random.randrange(0, N-10);
fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 20)
draw.text([x0,y0],"Hello World",font=fnt,fill=color_list[2]);
img.save(DIR+"/"+str(count)+".png");
img1=img.resize((24,24));
img1.save(DIR+"/small/"+str(count)+".png");
if count%1000==0:print("{} completed".format(str(count*10000**-1)));
from PIL import Image,ImageDraw,ImageFont;
import random;import os;
import numpy as np;import pickle;
DIR=os.getcwd();
all_large_image_matrix=np.zeros((10000,96,96,3),dtype=np.uint8);
all_small_image_matrix=np.zeros((10000,24,24,3),dtype=np.uint8);
for i in np.arange(0,10000):
img=Image.open(DIR+"/"+str(i)+".png");
img=np.array(img);
all_large_image_matrix[i]=img;
img1=Image.open(DIR+"/small/"+str(i)+".png");
img1=np.array(img1);
all_small_image_matrix[i]=img1;
if i%1000==0:print("{} completed".format(str(i*10000**-1)));
with open(DIR+"/all_large_image_matrix","wb") as f:
pickle.dump(all_large_image_matrix,f,protocol=pickle.HIGHEST_PROTOCOL);
with open(DIR+"/all_small_image_matrix","wb") as f:
pickle.dump(all_small_image_matrix,f,protocol=pickle.HIGHEST_PROTOCOL);'''
# loading dataset
'''import os;import pickle;
import numpy as np;
from PIL import Image;
DIR=os.getcwd();
with open(DIR+"/all_large_image_matrix","rb") as f:
all_large_image_matrix=pickle.load(f);
with open(DIR+"/all_small_image_matrix","rb") as f:
all_small_image_matrix=pickle.load(f);'''
# start training
#def train():
small_image_input = Input(shape=(16, 16, 3));
g_model= generator_model(small_image_input);
large_image_input = Input(shape=(32, 32, 3));
nearest_image_input=Input(shape=(32,32,3));
d_model= discriminator_model(large_image_input,nearest_image_input);
g_d_model = g_d_together(g_model, d_model, small_image_input,nearest_image_input);
d_optim = adam(lr=0.0001)
g_optim = adam(lr=0.00002);
#g_model.compile(loss="mse",optimizer=adam(lr=0.001));
d_model.compile(loss='binary_crossentropy', optimizer=d_optim)
g_d_model.compile(
loss='binary_crossentropy', optimizer=g_optim)
#plot_model(g_d_model, to_file="g_d_model.png", show_shapes=True);
'''from keras.datasets import mnist
from PIL import Image;
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 28,28, 1);
X_train_small=np.zeros((X_train.shape[0],14,14,1));
for i in np.arange(0,len(X_train)):
img=Image.fromarray(X_train[i].reshape((28,28)));
img=img.resize((14,14));
X_train_small[i]=np.array(img).reshape((14,14,1));'''
from keras.datasets import cifar10
from PIL import Image;import numpy as np;
from tqdm import tqdm;
(x_train, y_train), (x_test, y_test) = cifar10.load_data();
x_train=x_train.reshape(x_train.shape[0],32,32,3);
x_train_small=np.zeros((x_train.shape[0],16,16,3));
x_train_nearest=np.zeros((x_train.shape[0],32,32,3));
for i in np.arange(0,len(x_train)):
img_array=x_train[i];
img=Image.fromarray(img_array);
img1=img.resize((16,16),resample=Image.BICUBIC);
x_train_small[i]=np.array(img1);
img2=img1.resize((32,32),resample=Image.NEAREST);
x_train_nearest[i]=np.array(img2);
#pretrain generator
#g_model.compile(loss="mse",optimizer=g_optim);
#g_model.fit(x=x_train_small*255**-1,y=x_train*255**-1,batch_size=200,epochs=2);
#pretrain discriminator
'''batch=200;
for epoch in range(1):
initial_loss=[];
all_labels=np.arange(0,len(x_train));np.random.shuffle(all_labels);
batch_labels=np.array_split(all_labels,int(len(x_train)*batch**-1));
for t in tqdm(range(len(batch_labels))):
batch_large_input=np.zeros((batch,32,32,3),dtype=np.float32);
batch_nearest_input=np.zeros((batch,32,32,3),dtype=np.float32);
batch_small_input=np.zeros((batch,16,16,3),dtype=np.float32);
for i,ele in enumerate(batch_labels[t]):
batch_large_input[i]=(x_train[ele]-127.5)*127.5**-1;
batch_small_input[i]=x_train_small[ele]*255**-1;
batch_nearest_input[i]=(x_train_nearest[ele]-127.5)*127.5**-1;
batch_predict=g_model.predict(batch_small_input);
X=np.concatenate((batch_large_input,batch_predict));
X1=np.concatenate((batch_nearest_input,batch_nearest_input));
y = [random.uniform(0.7,1) for _ in range(batch)]+\
[random.uniform(0,0.3) for _ in range(batch)];
initial_loss.append(d_model.train_on_batch([X,X1],y));
with open(DIR+"/log","a") as f:
f.write("initial_loss: "+str(np.mean(initial_loss))+"\n");'''
g_model.load_weights(DIR+"/g_weights");
d_model.load_weights(DIR+"/d_weights");
batch_size=200;total_loss={};d_loss_average=8;g_loss_average=8;
for epoch in range(60):
total_loss["d_loss"] = [];
total_loss["g_loss"] = [];
all_image_labels=np.arange(0,len(x_train));
np.random.shuffle(all_image_labels);
batch_labels=np.array_split(all_image_labels,int(len(x_train)/batch_size));
for j in tqdm(range(len(batch_labels))):
batch_large_image_matrix = np.zeros((batch_size, 32, 32, 3), dtype=np.float32);
batch_nearest_image_matrix = np.zeros((batch_size, 32, 32, 3), dtype=np.float32);
batch_small_image_matrix = np.zeros((batch_size, 16, 16, 3), dtype=np.float32);
for i,ele in enumerate(batch_labels[j]):
batch_large_image_matrix[i]=(x_train[ele]-127.5)*127.5**-1;
batch_nearest_image_matrix[i]=(x_train_nearest[ele]-127.5)*127.5**-1;
batch_small_image_matrix[i]=x_train_small[ele]*255**-1;
generated_images = g_model.predict(batch_small_image_matrix, verbose=0);
X = np.concatenate((batch_large_image_matrix, generated_images));
X1=np.concatenate((batch_nearest_image_matrix,batch_nearest_image_matrix));
y = [random.uniform(0.7,1) for _ in range(batch_size)]+\
[random.uniform(0,0.3) for _ in range(batch_size)];
set_trainable(d_model, "discriminator", True);
d_loss = d_model.train_on_batch([X,X1], y);
total_loss["d_loss"].append(d_loss);
set_trainable(d_model, "discriminator", False);
g_loss = g_d_model.train_on_batch([batch_small_image_matrix,batch_nearest_image_matrix],
[random.uniform(0.7,1) for _ in range(batch_size)])
total_loss["g_loss"].append(g_loss);
d_loss_average=np.mean(total_loss["d_loss"]);
g_loss_average=np.mean(total_loss["g_loss"]);
with open(DIR+"/log","a") as f:
f.write(str(epoch)+"\t"+str(d_loss_average)+"\t"+str(g_loss_average)+"\n");
g_model.save_weights(DIR+"/g_weights");
d_model.save_weights(DIR+"/d_weights");