-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_dpo.py
90 lines (77 loc) · 3.08 KB
/
preprocess_dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import json
import random
from argparse import ArgumentParser
from pathlib import Path
from datasets import load_dataset
def make_dpo_samples(dataset):
dpo_samples = []
for sample in dataset["train"]:
dpo_samples.append(
{
"prompt": "<s>以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n"
+ sample["prompt"]
+ "\n\n### 応答:\n",
"chosen_response": sample["chosen"],
"rejected_response": sample["rejected"],
}
)
random.seed(42)
random.shuffle(dpo_samples)
return dpo_samples
def main():
parser = ArgumentParser()
parser.add_argument("--dataset-dir", type=str, default="./instruct3_datasets")
args = parser.parse_args()
# ac-self-inst
ac_self_inst = load_dataset("llm-jp/ac-self-inst")
ac_self_inst_samples: list[dict] = make_dpo_samples(ac_self_inst)
# aya-ja-evol-inst
aya_ja_evol_inst_orig = load_dataset(
"weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked"
)
idx2prompt: dict[int] = {}
for sample in aya_ja_evol_inst_orig["train"]:
idx2prompt[sample["idx"]] = sample["prompt"][1]["content"]
aya_ja_evol_inst = load_dataset("llm-jp/aya-ja-evol-inst")
aya_ja_evol_inst_samples = []
for sample in aya_ja_evol_inst["train"]:
prompt: str = idx2prompt[sample["idx"]]
aya_ja_evol_inst_samples.append(
{
"prompt": "<s>以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n"
+ prompt
+ "\n\n### 応答:\n",
"chosen_response": sample["chosen"],
"rejected_response": sample["rejected"],
}
)
random.seed(42)
random.shuffle(aya_ja_evol_inst_samples)
dev_samples = (
ac_self_inst_samples[: int(len(ac_self_inst_samples) * 0.05)]
+ aya_ja_evol_inst_samples[: int(len(aya_ja_evol_inst_samples) * 0.05)]
)
print(
f"Saving {len(dev_samples)} samples to {args.dataset_dir}/preference/dev/dev.jsonl"
)
dev_dir: Path = Path(f"{args.dataset_dir}/preference/dev")
dev_dir.mkdir(exist_ok=True, parents=True)
with (dev_dir / "dev.jsonl").open("w", encoding="utf-8") as f:
for sample in dev_samples:
json.dump(sample, f, ensure_ascii=False)
f.write("\n")
train_samples = (
ac_self_inst_samples[int(len(ac_self_inst_samples) * 0.05) :]
+ aya_ja_evol_inst_samples[int(len(aya_ja_evol_inst_samples) * 0.05) :]
)
print(
f"Saving {len(train_samples)} samples to {args.dataset_dir}/preference/train/train.jsonl"
)
train_dir: Path = Path(f"{args.dataset_dir}/preference/train")
train_dir.mkdir(exist_ok=True, parents=True)
with (train_dir / "train.jsonl").open("w", encoding="utf-8") as f:
for sample in train_samples:
json.dump(sample, f, ensure_ascii=False)
f.write("\n")
if __name__ == "__main__":
main()