-
Notifications
You must be signed in to change notification settings - Fork 7
Parallel asynchronous GET requests with asyncio
The 3 types of async statement in Python 3.5+ to get to know here are
-
async with
(asynchronous context manager) -
async for
(asynchronous generator) - (asynchronous generators)
(also will see async def
asynchronous function)
Another via RealPython uses aiohttp
The high-level program structure will look like this:
Read a sequence of URLs from a local file, urls.txt.
Send GET requests for the URLs and decode the resulting content. If this fails, stop there for a URL.
Search for the URLs within href tags in the HTML of the responses.
Write the results to foundurls.txt.
Do all of the above as asynchronously and concurrently as possible. (Use aiohttp for the requests, and aiofiles for the file-appends. These are two primary examples of IO that are well-suited for the async IO model.)
Code example
#!/usr/bin/env python3
# areq.py
"""Asynchronously get links embedded in multiple pages' HMTL."""
import asyncio
import logging
import re
import sys
from typing import IO
import urllib.error
import urllib.parse
import aiofiles
import aiohttp
from aiohttp import ClientSession
logging.basicConfig(
format="%(asctime)s %(levelname)s:%(name)s: %(message)s",
level=logging.DEBUG,
datefmt="%H:%M:%S",
stream=sys.stderr,
)
logger = logging.getLogger("areq")
logging.getLogger("chardet.charsetprober").disabled = True
HREF_RE = re.compile(r'href="(.*?)"')
async def fetch_html(url: str, session: ClientSession, **kwargs) -> str:
"""GET request wrapper to fetch page HTML.
kwargs are passed to `session.request()`.
"""
resp = await session.request(method="GET", url=url, **kwargs)
resp.raise_for_status()
logger.info("Got response [%s] for URL: %s", resp.status, url)
html = await resp.text()
return html
async def parse(url: str, session: ClientSession, **kwargs) -> set:
"""Find HREFs in the HTML of `url`."""
found = set()
try:
html = await fetch_html(url=url, session=session, **kwargs)
except (
aiohttp.ClientError,
aiohttp.http_exceptions.HttpProcessingError,
) as e:
logger.error(
"aiohttp exception for %s [%s]: %s",
url,
getattr(e, "status", None),
getattr(e, "message", None),
)
return found
except Exception as e:
logger.exception(
"Non-aiohttp exception occured: %s", getattr(e, "__dict__", {})
)
return found
else:
for link in HREF_RE.findall(html):
try:
abslink = urllib.parse.urljoin(url, link)
except (urllib.error.URLError, ValueError):
logger.exception("Error parsing URL: %s", link)
pass
else:
found.add(abslink)
logger.info("Found %d links for %s", len(found), url)
return found
async def write_one(file: IO, url: str, **kwargs) -> None:
"""Write the found HREFs from `url` to `file`."""
res = await parse(url=url, **kwargs)
if not res:
return None
async with aiofiles.open(file, "a") as f:
for p in res:
await f.write(f"{url}\t{p}\n")
logger.info("Wrote results for source URL: %s", url)
async def bulk_crawl_and_write(file: IO, urls: set, **kwargs) -> None:
"""Crawl & write concurrently to `file` for multiple `urls`."""
async with ClientSession() as session:
tasks = []
for url in urls:
tasks.append(
write_one(file=file, url=url, session=session, **kwargs)
)
await asyncio.gather(*tasks)
if __name__ == "__main__":
import pathlib
import sys
assert sys.version_info >= (3, 7), "Script requires Python 3.7+."
here = pathlib.Path(__file__).parent
with open(here.joinpath("urls.txt")) as infile:
urls = set(map(str.strip, infile))
outpath = here.joinpath("foundurls.txt")
with open(outpath, "w") as outfile:
outfile.write("source_url\tparsed_url\n")
asyncio.run(bulk_crawl_and_write(file=outpath, urls=urls))
The call to run
at the end means you don’t have to handle the opening and closing of the event loop itself,
it’s handled for you (as the Python docs for asyncio
recommend)
Application developers should typically use the high-level asyncio functions, such as asyncio.run(), and should rarely need to reference the loop object or call its methods. This section is intended mostly for authors of lower-level code, libraries, and frameworks, who need finer control over the event loop behavior.