-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet_D
38 lines (36 loc) · 1.26 KB
/
net_D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# 使用列表控制网络宽度, ‘e’ 表示模块中的特殊层,此处为3x3卷积
cfg_1 = {'DIY': [64, 'M', 128, 64, 128]}
dcfg = [256, 'e', 256, 1]
def net_1(self, cfg):
layers = []
in_channels = 6
for x in cfg:
if x == 'M':
layers +=[nn.Conv2d(in_channels,in_channels,kernel_size=2,
stride=2,padding=0,bias=False)]
layers += [nn.BatchNorm2d(x)]
layers += [nn.ReLU(inplace=True)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3,
padding=1, bias=False)]
layers += [nn.BatchNorm2d(x)]
layers += [nn.ReLU(inplace=True)]
in_channels = x
return nn.Sequential(*layers)
def eye_d(self):
layers = []
in_channels = 128
for x in dcfg:
if x != 'e':
layers += [nn.Conv2d(in_channels, x, kernel_size=2,
padding=0, bias=False)]
layers += [nn.BatchNorm2d(x)]
layers += [nn.ReLU(inplace=True)]
in_channels = x
else:
layers += [nn.Conv2d(in_channels, 384, kernel_size=3,
padding=0, bias=False)]
layers += [nn.BatchNorm2d(x)]
layers += [nn.ReLU(inplace=True)]
in_channels = 384
return nn.Sequential(*layers)