forked from mdelorme/fv3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThermalConduction.h
100 lines (85 loc) · 3.59 KB
/
ThermalConduction.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#pragma once
#include "SimInfo.h"
namespace fv3d {
KOKKOS_INLINE_FUNCTION
real_t computeKappa(real_t x, real_t y, real_t z, const Params ¶ms) {
real_t res;
switch (params.thermal_conductivity_mode) {
case TCM_B02:
{
const real_t tr = (tanh((z-params.b02_zmid)/params.b02_thickness) + 1.0) * 0.5;
res = params.kappa * (params.b02_kappa1 * (1.0-tr) + params.b02_kappa2 * tr);
break;
}
default:
res = params.kappa;
}
return res;
}
class ThermalConductionFunctor {
public:
Params params;
ThermalConductionFunctor(const Params ¶ms)
: params(params) {};
~ThermalConductionFunctor() = default;
void applyThermalConduction(Array Q, Array Unew, real_t dt) {
auto params = this->params;
const real_t dx = params.dx;
const real_t dy = params.dy;
const real_t dz = params.dz;
Kokkos::parallel_for(
"Thermal conduction",
params.range_dom,
KOKKOS_LAMBDA(const int i, const int j, const int k) {
Pos pos = getPos(params, i, j, k);
real_t x = pos[IX];
real_t y = pos[IY];
real_t z = pos[IZ];
real_t kappaL = 0.5 * (computeKappa(x, y, z, params) + computeKappa(x-dx, y, z, params));
real_t kappaR = 0.5 * (computeKappa(x, y, z, params) + computeKappa(x+dx, y, z, params));
real_t kappaU = 0.5 * (computeKappa(x, y, z, params) + computeKappa(x, y-dy, z, params));
real_t kappaD = 0.5 * (computeKappa(x, y, z, params) + computeKappa(x, y+dy, z, params));
real_t kappaF = 0.5 * (computeKappa(x, y, z, params) + computeKappa(x, y, z-dz, params));
real_t kappaB = 0.5 * (computeKappa(x, y, z, params) + computeKappa(x, y, z+dz, params));
// Ideal EOS with R = 1 assumed. T = P/rho
real_t TC = Q(k, j, i, IP) / Q(k, j, i, IR);
real_t TL = Q(k, j, i-1, IP) / Q(k, j, i-1, IR);
real_t TR = Q(k, j, i+1, IP) / Q(k, j, i+1, IR);
real_t TU = Q(k, j-1, i, IP) / Q(k, j-1, i, IR);
real_t TD = Q(k, j+1, i, IP) / Q(k, j+1, i, IR);
real_t TF = Q(k-1, j, i, IP) / Q(k-1, j, i, IR);
real_t TB = Q(k+1, j, i, IP) / Q(k+1, j, i, IR);
// Computing thermal flux
real_t FL = kappaL * (TC - TL) / dx;
real_t FR = kappaR * (TR - TC) / dx;
real_t FU = kappaU * (TC - TU) / dy;
real_t FD = kappaD * (TD - TC) / dy;
real_t FF = kappaF * (TC - TF) / dz;
real_t FB = kappaB * (TB - TC) / dz;
/**
* Boundaries treatment
* IMPORTANT NOTE :
* To be accurate, in the case of fixed temperature, since the temperature is taken at the interface
* the value of kappa should either be averaged between the cell-centered value and the interface
* or be evaluated at x=0.25dx / x=xmax-0.25dx
*/
if (k==params.kbeg && params.bctc_zmin != BCTC_NONE) {
switch (params.bctc_zmin) {
case BCTC_FIXED_TEMPERATURE: FF = kappaF * 2.0 * (TC-params.bctc_zmin_value) / dz; break;
case BCTC_FIXED_GRADIENT: FF = kappaF * params.bctc_zmin_value; break;
default: break;
}
}
if (k==params.kend-1 && params.bctc_zmax != BCTC_NONE) {
switch (params.bctc_zmax) {
case BCTC_FIXED_TEMPERATURE: FB = kappaB * 2.0 * (params.bctc_zmax_value-TC) / dz; break;
case BCTC_FIXED_GRADIENT: FB = kappaB * params.bctc_zmax_value; break;
default: break;
}
}
// And updating using a Godunov-like scheme
Unew(k, j, i, IE) += dt/dx * (FR - FL) + dt/dy * (FD - FU) + dt/dz * (FB - FF);
});
}
};
}