-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathin_02_horizon_properties.qmd
219 lines (173 loc) · 7.62 KB
/
in_02_horizon_properties.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
title: "Horizon properties"
editor: source
editor_options:
chunk_output_type: console
---
```{r}
library(dplyr)
library(tibble)
library(gt)
library(gtExtras)
```
## Size classes {#sec-in-size}
### Size classes for solid soil components {#sec-in-solsz}
The following size classification may be applied to size data gathered for peds and other solid soil components.
```{r}
#| label: tbl-in-size
#| tbl-cap: "Size classification for soil materials"
dat_in_size <-
tribble(~Code, ~Name, ~Description,
1, 'Microfine', '< 1',
2, 'Extremely fine', '1 - 2',
3, 'Very fine', '2 - 6',
4, 'Fine', '6 - 10',
5, 'Medium', '10 - 20',
6, 'Coarse', '20 - 60',
7, 'Very Coarse', '60 - 100',
8, 'Extremely coarse', '100 - 200',
9, 'Gross', '> 200'
)
tbl_in_size <- gt(dat_in_size) |>
tab_options(
column_labels.font.weight = 'bold',
heading.title.font.weight = 'bold',
table.align = 'center',
table.width = '85%'
) |>
tab_style(style = list(cell_text(color = 'red',
weight = 'bold',
align = 'center')),
locations = cells_body(columns = 1)) |>
cols_label(Description = 'Size range (mm)') |>
cols_width(Code ~pct(10), Name ~ pct(30))
tbl_in_size
```
### Size classes for rock fragments
The following classification may be applied to directly measured size data for rock fragments, or used when assessing rock fragment composition in detail (@sec-rockfrag).
```{r}
#| label: tbl-in-rockfrsz
#| tbl-cap: "Rock fragment size classes"
dat_in_rockfrsz <-
tribble(~Code, ~Name, ~Description,
1, 'Fine gravel', '2 - 6',
2, 'Medium gravel', '6 - 20',
3, 'Coarse gravel', '20 - 60',
4, 'Cobbles', '60 - 200',
5, 'Stones', '200 - 600',
6, 'Boulders', '600 - 2000',
7, 'Large boulders', '>2000')
tbl_in_rockfrsz <- gt(dat_in_rockfrsz) |>
tab_options(
column_labels.font.weight = 'bold',
heading.title.font.weight = 'bold',
table.align = 'center',
table.width = '85%'
) |>
tab_style(style = list(cell_text(color = 'red',
weight = 'bold',
align = 'center')),
locations = cells_body(columns = 1)) |>
cols_label(Description = 'Size range (mm)') |>
cols_width(Code ~pct(10), Name ~ pct(20))
tbl_in_rockfrsz
```
### Estimating size classes {#sec-in-sizepics}
The following images can help accurately estimate the size of soil features.
[images go here]{.diags}
## Abundance classes {#sec-in-abund}
### Abundance classes for roots {#sec-in-abrts}
```{r}
#| label: tbl-hr-rtab
#| tbl-cap: "Plant root abundance classes"
dat_hr_rtab <-
tribble(~Code, ~Name, ~Description,
0, 'None', '0%',
1, 'Few', '> 0 - 5%',
2, 'Common', '> 5 - 25%',
3, 'Many', '> 25 - 50%',
4, 'Abundant', '> 50%')
tbl_hr_rtab <- gt(dat_hr_rtab) |>
tab_options(
column_labels.font.weight = 'bold',
heading.title.font.weight = 'bold',
table.align = 'center',
table.width = '85%'
) |>
tab_style(style = list(cell_text(color = 'red',
weight = 'bold',
align = 'center')),
locations = cells_body(columns = 1)) |>
cols_width(Code ~pct(10), Name ~ pct(20))
tbl_hr_rtab
```
### Abundance classes for other soil components {#sec-in-abgen}
```{r}
#| label: tbl-in-abgen
#| tbl-cap: "General abundance classes"
dat_in_abgen <-
tribble(~Code, ~Name, ~Description,
0, 'None', '0%',
1, 'Very Few', '> 0 - 2%',
2, 'Few', '> 2 - 10',
3, 'Common', '> 10 - 35%',
4, 'Many', '> 35 - 50%',
5, 'Abundant', '> 50 - 75%',
6, 'Dominant', '> 75%' )
tbl_in_abgen <- gt(dat_in_abgen) |>
tab_options(
column_labels.font.weight = 'bold',
heading.title.font.weight = 'bold',
table.align = 'center',
table.width = '85%'
) |>
tab_style(style = list(cell_text(color = 'red',
weight = 'bold',
align = 'center')),
locations = cells_body(columns = 1)) |>
cols_width(Code ~pct(10), Name ~ pct(20))
tbl_in_abgen
```
### Estimating abundance classes {#sec-in-abundpics}
The following images can help accurately estimate percentage abundance of soil features by area.
[images go here]{.diags}
## Horizon drainage {#sec-in-hdrng}
Soil drainage is an assessment of how fast water leaves a soil profile relative to supply. This characteristic can be controlled by morphological characteristics that occur in a range of combinations.
Drainage should first be assessed on a per-horizon basis. These interpretations are later summarised at a profile level (see @sec-in-pdrng). @tbl-in-hdrng below highlights the common characteristics associated with each horizon drainage class.
```{r}
#| label: tbl-in-hdrng
#| tbl-cap: "Horizon-level drainage characteristics"
dat_in_hdrng <-
tribble(~Code, ~Name, ~HNames, ~sws, ~mcol, ~secfts,
'VP', 'Very poor', 'O*, *r', 'Saturated or wet', 'Low-chroma', 'Few to none',
'PO', 'Poor', '*r, *g', 'Wet', 'Low-chroma', 'Few to none, mottles more often on ped surfaces than internals',
'IP', 'Imperfect', '*(g)', 'Wet to Moist', 'Low-chroma patterns on brighter matrix', 'Fe and/or Mn-rich segregations, nodules and pans',
'MW', 'Moderately Well', '*(f)', 'Wet to Dry', 'Colour patterns but no low chroma colours', 'Mottles more often in ped interiors' ,
'WE', 'Well', 'No redox suffixes', 'Moist to Dry', 'No low chroma colours', 'Few to none')
tbl_in_hdrng <- gt(dat_in_hdrng) |>
tab_options(
column_labels.font.weight = 'bold',
heading.title.font.weight = 'bold',
table.align = 'center',
table.width = '85%'
) |>
tab_style(style = list(cell_text(color = 'red',
weight = 'bold',
align = 'center')),
locations = cells_body(columns = 1)) |>
tab_style(style = list(cell_text(weight = 'bold')),
locations = cells_body(columns = 2)) |>
cols_label(HNames = 'Horizon Names',
sws = 'Typical Moisture',
secfts = 'Redox concentrations',
mcol = 'Main colours') |>
cols_width(Code ~pct(10), Name ~ pct(20))
tbl_in_hdrng
```
### Classifying topsoil drainage
Morphological features associated with drainage status can be hard to spot in [A]{.ceg} horizons, mostly due to their darker colour. *When otherwise in doubt*, a well developed [A]{.ceg} horizon should be assigned a drainage class one better than the horizon below it (usually a [B]{.ceg}, [E]{.ceg}, or [C]{.ceg} horizon). A poorly developed [A]{.ceg} horizon should receive the same class assignment as the horizon below. Use the 'distinct topsoil' NZSC diagnostic criteria to identify well developed [A]{.ceg} horizons.
The reasoning behind this rule of thumb is that the lack of topsoil development may be partially explained by lack of contrast in the drainage regime between the topsoil and the layer below.
<!-- example diagram here --->
::: {#nte-anoxia .callout-note appearance="minimal" collapse="true" title="Wet vs wet-and-anoxic soils"}
Soils that are persistently wet may also become anoxic. This is more common in low-permeability soils, where slow percolation allows enough time for oxygen to be consumed entirely. <!--- add more --->
:::