-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsolve.py
100 lines (80 loc) · 2.4 KB
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from Crypto.Util.number import *
with open("output.txt") as f:
exec(f.read())
def f(p):
return bytes_to_long(str(p).encode())
def factor1(n):
l = 0
r = n
while l + 1 != r:
m = (l + r) // 2
mm = bytes_to_long(str(m).encode())
if m * mm == n:
break
elif m * mm > n:
r = m
else:
l = m
return m, n // m
def factor2(n1, n2):
n1p = None
def test_digits(ps, qs):
nonlocal n1p
if n1p is not None:
return False
p = sum([pi * 10**i for i, pi in enumerate(ps)])
pp = sum([(48 + pi) * 256**i for i, pi in enumerate(ps)])
q = sum([pi * 10**i for i, pi in enumerate(qs)])
qq = sum([(48 + pi) * 256**i for i, pi in enumerate(qs)])
if p != 0 and p != 1 and n1 % p == 0:
n1p = p
return False
m1 = 10 ** len(ps)
m2 = 256 ** len(qs)
return (p * q) % m1 == n1 % m1 and (pp * qq) % m2 == n2 % m2
def find_ij(ps, qs):
for i in range(10):
for j in range(10):
if test_digits(ps + [i], qs + [j]):
yield i, j
def search(ps, qs):
for i, j in find_ij(ps, qs):
search(ps + [i], qs + [j])
search([], [])
n2p = bytes_to_long(str(n1p).encode())
assert n2 % n2p == 0
return (n1p, n1 // n1p), (n2p, n2 // n2p)
def factor3(n1, n2):
def try_factor(l, r):
while l < r:
m = (l + r) // 2
if m > 1 and n1 % m == 0:
return m
if m * f(n2 // f(m)) < n1:
l = m + 1
else:
r = m - 1
for i in range(16):
# brute force top 4 bits of p1
# because len(str(p1)) must be constant to have monotonic property
l = i << 508
r = l + (1 << 508)
if p1 := try_factor(l, r):
return (p1, n1 // p1), (f(p1), n2 // f(p1))
p1, q1 = factor1(n1)
assert p1 * q1 == n1
(p2, q2), (p3, q3) = factor2(n2, n3)
assert p2 * q2 == n2
assert p3 * q3 == n3
(p4, q4), (p5, q5) = factor3(n4, n5)
assert p4 * q4 == n4
assert p5 * q5 == n5
def decrypt(c, p, q):
n = p * q
d = pow(e, -1, (p - 1) * (q - 1))
return pow(c, d, n)
ar = [(n1, p1, q1), (n2, p2, q2), (n3, p3, q3), (n4, p4, q4), (n5, p5, q5)]
ar.sort(key=lambda x: x[0], reverse=True)
for n, p, q in ar:
c = decrypt(c, p, q)
print(long_to_bytes(c).decode())