-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlwpm.sage
142 lines (119 loc) · 3.67 KB
/
lwpm.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from lll_cvp import polynomials_to_matrix
import random, os
from tqdm import tqdm, trange
import subprocess, time, itertools
PR = PolynomialRing(Zmod(2), 1, "x")
x = PR.gen()
PR1 = PolynomialRing(Zmod(2), "x")
def mask_to_poly(mask, bs=128):
return PR(PR1(list(map(int, f"{mask:0{bs}b}"[::-1]))) + x**bs)
def lwmp_parity_check(f, n=1024):
# lwmp can be reduced to find a low weight codework in a linear code
# this returns the parity check matrix of that code
k = n - f.degree()
assert k >= n // 2, "dumer isd only works for k >= n/2"
xpower = []
t = 1
for i in range(n):
xpower.append(t)
t = t * x
if t.degree() >= f.degree():
t -= f
M, monos = polynomials_to_matrix(xpower)
H = matrix(GF(2), M.T[::-1]) # already echelonized
assert H[:, : H.nrows()] == 1
assert H.dimensions() == (n - k, n)
return H, n, k
def solve_lwpm_dumer(f, n=1024):
# git clone https://github.com/vvasseur/isd
# cd isd
# mkdir build
# cd build
# cmake .. -DDUMER_LW=1
# make -j
# https://decodingchallenge.org/low-weight
H, n, k = lwmp_parity_check(f, n)
xb = []
t = 1
for i in range(n):
xb.append(t)
t = t * x
xb = vector(xb)
def write_challenge(He, filename):
with open(filename, "w") as wf:
wf.write("# n\n")
wf.write(f"{n}\n")
wf.write("# k\n")
wf.write(f"{k}\n") # patch parse_input_lw to accept k != n // 2
wf.write("# seed\n")
wf.write("0\n")
wf.write(
"# H^transpose (each line corresponds to column of H, the identity part is omitted)\n"
)
for col in He.T.rows()[He.nrows() :]:
wf.write("".join(str(x) for x in col) + "\n")
write_challenge(H, "lw_challenge")
proc = subprocess.Popen(
"./isd 8 LW lw_challenge", shell=True, stdout=subprocess.PIPE
)
time.sleep(2)
proc.kill()
stdout = proc.stdout.read().decode()
s = stdout.splitlines()[-1].split(": ")[1]
print("ISD out", s)
g = vector(map(ZZ, s)) * xb
assert g % f == 0
g = g // list(g)[-1][1]
assert g % f == 0
return g
f1 = mask_to_poly(0x6D6AC812F52A212D5A0B9F3117801FD5)
f2 = mask_to_poly(0xD736F40E0DED96B603F62CBE394FEF3D)
f3 = mask_to_poly(0xA55746EF3955B07595ABC13B9EBEED6B)
f4 = mask_to_poly(0xD670201BAC7515352A273372B2A95B23)
solve_lwpm_dumer(f1)
solve_lwpm_dumer(f2)
solve_lwpm_dumer(f3)
solve_lwpm_dumer(f4)
def solve_lwpm_birthday(f, w, mx=700):
if hasattr(f, "univariate_polynomial"):
f = f.univariate_polynomial()
x = f.parent().gen()
assert w >= 2
w1 = w // 2
w2 = w - w1
xpower = []
t = 1
for i in range(mx):
xpower.append(t)
t = t * x
if t.degree() >= f.degree():
t -= f
tot1 = int(binomial(mx, w1))
tot2 = int(binomial(mx, w2))
tbl = {}
for sel in tqdm(itertools.combinations(range(mx), w1), total=tot1):
ft = sum(xpower[i] for i in sel)
tbl[ft] = sel
for sel in tqdm(itertools.combinations(range(mx), w2), total=tot2):
ft = sum(xpower[i] for i in sel)
if ft in tbl and tbl[ft] != sel:
ftt = sum(x**i for i in tbl[ft] + sel)
return ftt
solve_lwpm_birthday(f2, 3)
solve_lwpm_birthday(f3, 3)
def solve_lwmp_bkz(f, n=700):
H, n, k = lwmp_parity_check(f, n)
xb = []
t = 1
for i in range(n):
xb.append(t)
t = t * x
xb = vector(xb)
rr = H.right_kernel_matrix().change_ring(ZZ).BKZ()
g = rr[0] * xb
assert g % f == 0
g = g // list(g)[-1][1]
assert g % f == 0
return g
solve_lwmp_bkz(f2)
solve_lwmp_bkz(f3)