Skip to content

Commit 56774bf

Browse files
committed
Merge pull request matplotlib#640 from jkseppan/merge-v1.1.x
Merge v1.1.x
2 parents 56c299a + 1581a1a commit 56774bf

File tree

9 files changed

+208
-146
lines changed

9 files changed

+208
-146
lines changed

CHANGELOG

+2
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,5 @@
1+
2011-12-27 Work around an EINTR bug in some versions of subprocess. - JKS
2+
13
2011-10-25 added support for \operatorname to mathtext,
24
including the ability to insert spaces, such as
35
$\operatorname{arg\,max}$ - PI

INSTALL

+5-5
Original file line numberDiff line numberDiff line change
@@ -45,10 +45,10 @@ progress::
4545
>>> import numpy
4646
>>> print numpy.__version__
4747

48-
matplotlib requires numpy version 1.1 or later. Although it is not a
49-
requirement to use matplotlib, we strongly encourage you to install
50-
`ipython <http://ipython.org>`_, which is an interactive
51-
shell for python that is matplotlib-aware.
48+
matplotlib requires numpy version |minimum_numpy_version| or later.
49+
Although it is not a requirement to use matplotlib, we strongly
50+
encourage you to install `ipython <http://ipython.org>`_, which is an
51+
interactive shell for python that is matplotlib-aware.
5252

5353
Next, we need to get matplotlib installed. We provide prebuilt
5454
binaries for OS X and Windows on the matplotlib `download
@@ -182,7 +182,7 @@ libraries themselves.
182182
:term:`python` 2.6 (or later but not python3)
183183
matplotlib requires python 2.6 or later (`download <http://www.python.org/download/>`__)
184184

185-
:term:`numpy` 1.1 (or later)
185+
:term:`numpy` |minimum_numpy_version| (or later)
186186
array support for python (`download
187187
<http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103>`__)
188188

doc/conf.py

+4
Original file line numberDiff line numberDiff line change
@@ -182,3 +182,7 @@
182182
# Show both class-level docstring and __init__ docstring in class
183183
# documentation
184184
autoclass_content = 'both'
185+
186+
rst_epilog = """
187+
.. |minimum_numpy_version| replace:: %s
188+
""" % matplotlib.__version__numpy__

examples/api/radar_chart.py

+166-114
Original file line numberDiff line numberDiff line change
@@ -1,77 +1,124 @@
1+
"""
2+
Example of creating a radar chart (a.k.a. a spider or star chart) [1]_.
3+
4+
Although this example allows a frame of either 'circle' or 'polygon', polygon
5+
frames don't have proper gridlines (the lines are circles instead of polygons).
6+
It's possible to get a polygon grid by setting GRIDLINE_INTERPOLATION_STEPS in
7+
matplotlib.axis to the desired number of vertices, but the orientation of the
8+
polygon is not aligned with the radial axes.
9+
10+
.. [1] http://en.wikipedia.org/wiki/Radar_chart
11+
"""
112
import numpy as np
213

314
import matplotlib.pyplot as plt
4-
from matplotlib.projections.polar import PolarAxes
5-
from matplotlib.projections import register_projection
6-
7-
def radar_factory(num_vars, frame='circle'):
8-
"""Create a radar chart with `num_vars` axes."""
9-
# calculate evenly-spaced axis angles
10-
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
11-
# rotate theta such that the first axis is at the top
12-
theta += np.pi/2
13-
14-
def draw_poly_frame(self, x0, y0, r):
15-
# TODO: use transforms to convert (x, y) to (r, theta)
16-
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
17-
return plt.Polygon(verts, closed=True, edgecolor='k')
18-
19-
def draw_circle_frame(self, x0, y0, r):
20-
return plt.Circle((x0, y0), r)
21-
22-
frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
23-
if frame not in frame_dict:
24-
raise ValueError, 'unknown value for `frame`: %s' % frame
25-
26-
class RadarAxes(PolarAxes):
27-
"""Class for creating a radar chart (a.k.a. a spider or star chart)
28-
29-
http://en.wikipedia.org/wiki/Radar_chart
30-
"""
31-
name = 'radar'
32-
# use 1 line segment to connect specified points
33-
RESOLUTION = 1
34-
# define draw_frame method
35-
draw_frame = frame_dict[frame]
36-
37-
def fill(self, *args, **kwargs):
38-
"""Override fill so that line is closed by default"""
39-
closed = kwargs.pop('closed', True)
40-
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
41-
42-
def plot(self, *args, **kwargs):
43-
"""Override plot so that line is closed by default"""
44-
lines = super(RadarAxes, self).plot(*args, **kwargs)
45-
for line in lines:
46-
self._close_line(line)
47-
48-
def _close_line(self, line):
49-
x, y = line.get_data()
50-
# FIXME: markers at x[0], y[0] get doubled-up
51-
if x[0] != x[-1]:
52-
x = np.concatenate((x, [x[0]]))
53-
y = np.concatenate((y, [y[0]]))
54-
line.set_data(x, y)
55-
56-
def set_varlabels(self, labels):
57-
self.set_thetagrids(theta * 180/np.pi, labels)
58-
59-
def _gen_axes_patch(self):
60-
x0, y0 = (0.5, 0.5)
61-
r = 0.5
62-
return self.draw_frame(x0, y0, r)
63-
64-
register_projection(RadarAxes)
65-
return theta
66-
67-
68-
if __name__ == '__main__':
69-
#The following data is from the Denver Aerosol Sources and Health study.
70-
#See doi:10.1016/j.atmosenv.2008.12.017
15+
from matplotlib.path import Path
16+
from matplotlib.spines import Spine
17+
from matplotlib.projections.polar import PolarAxes
18+
from matplotlib.projections import register_projection
19+
20+
21+
def radar_factory(num_vars, frame='circle'):
22+
"""Create a radar chart with `num_vars` axes.
23+
24+
This function creates a RadarAxes projection and registers it.
25+
26+
Parameters
27+
----------
28+
num_vars : int
29+
Number of variables for radar chart.
30+
frame : {'circle' | 'polygon'}
31+
Shape of frame surrounding axes.
32+
33+
"""
34+
# calculate evenly-spaced axis angles
35+
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
36+
# rotate theta such that the first axis is at the top
37+
theta += np.pi/2
38+
39+
def draw_poly_patch(self):
40+
verts = unit_poly_verts(theta)
41+
return plt.Polygon(verts, closed=True, edgecolor='k')
42+
43+
def draw_circle_patch(self):
44+
# unit circle centered on (0.5, 0.5)
45+
return plt.Circle((0.5, 0.5), 0.5)
46+
47+
patch_dict = {'polygon': draw_poly_patch, 'circle': draw_circle_patch}
48+
if frame not in patch_dict:
49+
raise ValueError, 'unknown value for `frame`: %s' % frame
50+
51+
class RadarAxes(PolarAxes):
52+
53+
name = 'radar'
54+
# use 1 line segment to connect specified points
55+
RESOLUTION = 1
56+
# define draw_frame method
57+
draw_patch = patch_dict[frame]
58+
59+
def fill(self, *args, **kwargs):
60+
"""Override fill so that line is closed by default"""
61+
closed = kwargs.pop('closed', True)
62+
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
63+
64+
def plot(self, *args, **kwargs):
65+
"""Override plot so that line is closed by default"""
66+
lines = super(RadarAxes, self).plot(*args, **kwargs)
67+
for line in lines:
68+
self._close_line(line)
69+
70+
def _close_line(self, line):
71+
x, y = line.get_data()
72+
# FIXME: markers at x[0], y[0] get doubled-up
73+
if x[0] != x[-1]:
74+
x = np.concatenate((x, [x[0]]))
75+
y = np.concatenate((y, [y[0]]))
76+
line.set_data(x, y)
77+
78+
def set_varlabels(self, labels):
79+
self.set_thetagrids(theta * 180/np.pi, labels)
80+
81+
def _gen_axes_patch(self):
82+
return self.draw_patch()
83+
84+
def _gen_axes_spines(self):
85+
if frame == 'circle':
86+
return PolarAxes._gen_axes_spines(self)
87+
# The following is a hack to get the spines (i.e. the axes frame)
88+
# to draw correctly for a polygon frame.
89+
90+
# spine_type must be 'left', 'right', 'top', 'bottom', or `circle`.
91+
spine_type = 'circle'
92+
verts = unit_poly_verts(theta)
93+
# close off polygon by repeating first vertex
94+
verts.append(verts[0])
95+
path = Path(verts)
96+
97+
spine = Spine(self, spine_type, path)
98+
spine.set_transform(self.transAxes)
99+
return {'polar': spine}
100+
101+
register_projection(RadarAxes)
102+
return theta
103+
104+
105+
def unit_poly_verts(theta):
106+
"""Return vertices of polygon for subplot axes.
107+
108+
This polygon is circumscribed by a unit circle centered at (0.5, 0.5)
109+
"""
110+
x0, y0, r = [0.5] * 3
111+
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
112+
return verts
113+
114+
115+
def example_data():
116+
#The following data is from the Denver Aerosol Sources and Health study.
117+
#See doi:10.1016/j.atmosenv.2008.12.017
71118
#
72119
#The data are pollution source profile estimates for five modeled pollution
73120
#sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical species.
74-
#The radar charts are experimented with here to see if we can nicely
121+
#The radar charts are experimented with here to see if we can nicely
75122
#visualize how the modeled source profiles change across four scenarios:
76123
# 1) No gas-phase species present, just seven particulate counts on
77124
# Sulfate
@@ -81,64 +128,69 @@ def _gen_axes_patch(self):
81128
# Organic Carbon fraction 2 (OC2)
82129
# Organic Carbon fraction 3 (OC3)
83130
# Pyrolized Organic Carbon (OP)
84-
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
85-
# 3)Inclusion of gas-phase specie ozone (O3).
131+
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
132+
# 3)Inclusion of gas-phase specie ozone (O3).
86133
# 4)Inclusion of both gas-phase speciesis present...
134+
data = {
135+
'column names':
136+
['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
137+
'Basecase':
138+
[[0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00],
139+
[0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00],
140+
[0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00],
141+
[0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00],
142+
[0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]],
143+
'With CO':
144+
[[0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00],
145+
[0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00],
146+
[0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00],
147+
[0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00],
148+
[0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]],
149+
'With O3':
150+
[[0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03],
151+
[0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00],
152+
[0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00],
153+
[0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95],
154+
[0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]],
155+
'CO & O3':
156+
[[0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01],
157+
[0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00],
158+
[0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00],
159+
[0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88],
160+
[0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]]
161+
}
162+
return data
163+
164+
165+
if __name__ == '__main__':
87166
N = 9
88-
theta = radar_factory(N)
89-
spoke_labels = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO',
90-
'O3']
91-
f1_base = [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00]
92-
f1_CO = [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00]
93-
f1_O3 = [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03]
94-
f1_both = [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01]
95-
96-
f2_base = [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00]
97-
f2_CO = [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00]
98-
f2_O3 = [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00]
99-
f2_both = [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00]
100-
101-
f3_base = [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00]
102-
f3_CO = [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00]
103-
f3_O3 = [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00]
104-
f3_both = [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00]
105-
106-
f4_base = [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00]
107-
f4_CO = [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00]
108-
f4_O3 = [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95]
109-
f4_both = [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88]
110-
111-
f5_base = [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]
112-
f5_CO = [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]
113-
f5_O3 = [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]
114-
f5_both = [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]
115-
116-
fig = plt.figure(figsize=(9,9))
117-
# adjust spacing around the subplots
167+
theta = radar_factory(N, frame='polygon')
168+
169+
data = example_data()
170+
spoke_labels = data.pop('column names')
171+
172+
fig = plt.figure(figsize=(9, 9))
118173
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
119-
title_list = ['Basecase', 'With CO', 'With O3', 'CO & O3']
120-
data = {'Basecase': [f1_base, f2_base, f3_base, f4_base, f5_base],
121-
'With CO': [f1_CO, f2_CO, f3_CO, f4_CO, f5_CO],
122-
'With O3': [f1_O3, f2_O3, f3_O3, f4_O3, f5_O3],
123-
'CO & O3': [f1_both, f2_both, f3_both, f4_both, f5_both]}
174+
124175
colors = ['b', 'r', 'g', 'm', 'y']
125-
# chemicals range from 0 to 1
126-
radial_grid = [0.2, 0.4, 0.6, 0.8]
127-
# If you don't care about the order, you can loop over data_dict.items()
128-
for n, title in enumerate(title_list):
176+
# Plot the four cases from the example data on separate axes
177+
for n, title in enumerate(data.keys()):
129178
ax = fig.add_subplot(2, 2, n+1, projection='radar')
130-
plt.rgrids(radial_grid)
179+
plt.rgrids([0.2, 0.4, 0.6, 0.8])
131180
ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
132181
horizontalalignment='center', verticalalignment='center')
133182
for d, color in zip(data[title], colors):
134-
ax.plot(theta, d, color=color)
135-
ax.fill(theta, d, facecolor=color, alpha=0.25)
183+
ax.plot(theta, d, color=color)
184+
ax.fill(theta, d, facecolor=color, alpha=0.25)
136185
ax.set_varlabels(spoke_labels)
186+
137187
# add legend relative to top-left plot
138188
plt.subplot(2,2,1)
139189
labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
140190
legend = plt.legend(labels, loc=(0.9, .95), labelspacing=0.1)
141191
plt.setp(legend.get_texts(), fontsize='small')
142-
plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
143-
ha='center', color='black', weight='bold', size='large')
192+
193+
plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
194+
ha='center', color='black', weight='bold', size='large')
144195
plt.show()
196+

lib/matplotlib/__init__.py

+10-3
Original file line numberDiff line numberDiff line change
@@ -100,6 +100,7 @@
100100
from __future__ import print_function
101101

102102
__version__ = '1.2.x'
103+
__version__numpy__ = '1.4' # minimum required numpy version
103104

104105
import os, re, shutil, subprocess, sys, warnings
105106
import distutils.sysconfig
@@ -161,11 +162,17 @@ def byte2str(b): return b
161162
if not _python24:
162163
raise ImportError('matplotlib requires Python 2.4 or later')
163164

165+
164166
import numpy
165-
nmajor, nminor = [int(n) for n in numpy.__version__.split('.')[:2]]
166-
if not (nmajor > 1 or (nmajor == 1 and nminor >= 1)):
167+
from distutils import version
168+
expected_version = version.StrictVersion(__version__numpy__)
169+
found_version = version.StrictVersion(numpy.__version__)
170+
if not found_version >= expected_version:
167171
raise ImportError(
168-
'numpy 1.1 or later is required; you have %s' % numpy.__version__)
172+
'numpy %s or later is required; you have %s' % (
173+
__version__numpy__, numpy.__version__))
174+
del version
175+
169176

170177
def is_string_like(obj):
171178
if hasattr(obj, 'shape'): return 0

0 commit comments

Comments
 (0)