Skip to content

Commit 1418dbd

Browse files
lemmas for integrals on increasing set sequences (#1579)
--------- Co-authored-by: Reynald Affeldt <[email protected]>
1 parent 6b239c7 commit 1418dbd

File tree

2 files changed

+96
-0
lines changed

2 files changed

+96
-0
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -80,6 +80,12 @@
8080
+ lemma `measurable_cons`
8181
+ lemma `measurable_behead`
8282

83+
- in `lebesgue_integral_theory/lebesgue_integral_nonneg.v`:
84+
+ lemmas `ge0_nondecreasing_set_nondecreasing_integral`,
85+
`ge0_nondecreasing_set_cvg_integral`,
86+
`le0_nondecreasing_set_nonincreasing_integral`,
87+
`le0_nondecreasing_set_cvg_integral`
88+
8389
### Changed
8490

8591
- in `convex.v`:

theories/lebesgue_integral_theory/lebesgue_integral_nonneg.v

Lines changed: 90 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1558,3 +1558,93 @@ Qed.
15581558

15591559
End lebesgue_measure_integral.
15601560
Arguments integral_Sset1 {R f A} r.
1561+
1562+
Section ge0_nondecreasing_set_cvg_integral.
1563+
Context {d : measure_display} {T : measurableType d} {R : realType}.
1564+
Variables (F : (set T)^nat) (f : T -> \bar R) (mu : measure T R).
1565+
Local Open Scope ereal_scope.
1566+
Hypotheses (nndF : nondecreasing_seq F) (mF : forall i, measurable (F i)).
1567+
Hypothesis mf : forall i, measurable_fun (F i) f.
1568+
Hypothesis f0 : forall i x, F i x -> 0 <= f x.
1569+
1570+
Lemma ge0_nondecreasing_set_nondecreasing_integral :
1571+
nondecreasing_seq (fun i => \int[mu]_(x in F i) f x).
1572+
Proof.
1573+
apply/nondecreasing_seqP => n; apply: ge0_subset_integral => //=.
1574+
- by move=> ?; exact: f0.
1575+
- by rewrite -subsetEset; exact: nndF.
1576+
Qed.
1577+
1578+
Lemma ge0_nondecreasing_set_cvg_integral :
1579+
\int[mu]_(x in F i) f x @[i --> \oo] --> \int[mu]_(x in \bigcup_i F i) f x.
1580+
Proof.
1581+
apply: cvg_toP.
1582+
apply: ereal_nondecreasing_is_cvgn.
1583+
exact: ge0_nondecreasing_set_nondecreasing_integral.
1584+
under eq_fun do rewrite integral_mkcond/=.
1585+
rewrite -monotone_convergence//=; last 3 first.
1586+
- by move=> n; apply/(measurable_restrictT f).
1587+
- by move=> n x _; apply: erestrict_ge0 => {}x; exact: f0.
1588+
- move=> x _; apply/nondecreasing_seqP => n; apply: restrict_lee => //.
1589+
by move=> {}x; exact: f0.
1590+
by rewrite -subsetEset; exact: nndF.
1591+
rewrite [RHS]integral_mkcond/=.
1592+
apply: eq_integral => /=; rewrite /g_sigma_algebraType/ocitv_type => x _.
1593+
transitivity (ereal_sup (range (fun n => (f \_ (F n)) x))).
1594+
apply/cvg_lim => //.
1595+
apply/ereal_nondecreasing_cvgn/nondecreasing_seqP => n; apply: restrict_lee.
1596+
by move=> {}x; exact: f0.
1597+
by rewrite -subsetEset; exact: nndF.
1598+
apply/eqP; rewrite eq_le; apply/andP; split.
1599+
- apply: ub_ereal_sup => _/= [n _ <-].
1600+
apply: restrict_lee; last exact: bigcup_sup.
1601+
by move=> ? [? _]; exact: f0.
1602+
- rewrite patchE; case: ifPn=> [|/negP].
1603+
rewrite inE => -[n _ Fnx].
1604+
by apply: ereal_sup_ge; exists (f \_ (F n) x) => //; rewrite patchE mem_set.
1605+
rewrite inE -[X in X -> _]/((~` _) x) setC_bigcup => nFx.
1606+
apply/ereal_sup_ge; exists point => //=; exists 0%R => //.
1607+
by rewrite patchE memNset//; exact: nFx.
1608+
Qed.
1609+
1610+
End ge0_nondecreasing_set_cvg_integral.
1611+
1612+
Section le0_nondecreasing_set_cvg_integral.
1613+
Context {d : measure_display} {T : measurableType d} {R : realType}.
1614+
Variables (F : (set T)^nat) (f : T -> \bar R) (mu : measure T R).
1615+
Local Open Scope ereal_scope.
1616+
Hypotheses (nndF : nondecreasing_seq F) (mF : forall i, measurable (F i)).
1617+
Hypothesis mf : forall i, measurable_fun (F i) f.
1618+
Hypothesis f0 : forall i x, F i x -> f x <= 0.
1619+
1620+
Let intNS n : (- \int[mu]_(x in F n) f x) = \int[mu]_(x in F n) - f x.
1621+
Proof.
1622+
apply/esym; apply: integralN => /=; apply: fin_num_adde_defr.
1623+
rewrite integral0_eq// => x Fnx.
1624+
by rewrite (@le0_funeposE _ _ (F n)) ?inE//; exact: f0.
1625+
Qed.
1626+
1627+
Let mNf i : measurable_fun (F i) (\- f).
1628+
Proof. by apply: measurableT_comp => //; exact: mf. Qed.
1629+
1630+
Let Nf_ge0 i x: F i x -> 0%R <= - f x.
1631+
Proof. by move=> Six; rewrite leeNr oppe0; exact: f0 Six. Qed.
1632+
1633+
Lemma le0_nondecreasing_set_nonincreasing_integral :
1634+
nonincreasing_seq (fun i => \int[mu]_(x in F i) f x).
1635+
Proof.
1636+
move=> m n mn; rewrite -leeN2 2!intNS.
1637+
exact: ge0_nondecreasing_set_nondecreasing_integral.
1638+
Qed.
1639+
1640+
Lemma le0_nondecreasing_set_cvg_integral :
1641+
\int[mu]_(x in F i) f x @[i --> \oo] --> \int[mu]_(x in \bigcup_i F i) f x.
1642+
Proof.
1643+
apply/cvgeNP; rewrite -integralN/=; last first.
1644+
apply: fin_num_adde_defr; rewrite integral0_eq// => x [n _ Fnx].
1645+
by rewrite (le0_funeposE (@f0 n))// inE.
1646+
under eq_cvg do rewrite intNS.
1647+
exact: ge0_nondecreasing_set_cvg_integral.
1648+
Qed.
1649+
1650+
End le0_nondecreasing_set_cvg_integral.

0 commit comments

Comments
 (0)