Skip to content

Commit 2791eff

Browse files
committed
renaming
1 parent 9e271cd commit 2791eff

File tree

4 files changed

+101
-126
lines changed

4 files changed

+101
-126
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 5 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -14,17 +14,6 @@
1414
+ lemmas `RabsE`, `RdistE`, `sum_f_R0E`, `factE`
1515

1616
- new file `internal_Eqdep_dec.v` (don't use, internal, to be removed)
17-
- in `normedtype.v`:
18-
+ lemma `scaler1`
19-
20-
- in `derive.v`:
21-
+ lemmas `horner0_ext`, `hornerD_ext`, `horner_scale_ext`, `hornerC_ext`,
22-
`derivable_horner`, `derivE`, `continuous_horner`
23-
+ instance `is_derive_poly`
24-
- in `mathcomp_extra.v`:
25-
+ lemma `partition_disjoint_bigfcup`
26-
- in `lebesgue_measure.v`:
27-
+ lemma `measurable_indicP`
2817

2918
- in `numfun.v`:
3019
+ defintions `funrpos`, `funrneg` with notations `^\+` and `^\-`
@@ -36,35 +25,20 @@
3625

3726
- in `measure.v`:
3827
+ lemma `preimage_class_comp`
39-
+ defintions `mapping_display`, `g_sigma_algebra_mappingType`, `g_sigma_algebra_mapping`,
40-
notations `.-mapping`, `.-mapping.-measurable`
28+
+ defintions `preimage_display`, `g_sigma_algebra_preimageType`, `g_sigma_algebra_preimage`,
29+
notations `.-preimage`, `.-preimage.-measurable`
4130

42-
- in `lebesgue_measure.v`:
31+
- in `measurable_realfun.v`:
4332
+ lemmas `measurable_funrpos`, `measurable_funrneg`
4433

45-
- in `lebesgue_integral.v`:
46-
+ lemmas `integral_fin_num_abs`, `Rintegral_cst`, `le_Rintegral`
47-
48-
- new file `pi_irrational.v`:
49-
+ lemmas `measurable_poly`
50-
+ definition `rational`
51-
+ module `pi_irrational`
52-
+ lemma `pi_irrationnal`
53-
- in `constructive_ereal.v`:
54-
+ notations `\prod` in scope ereal_scope
55-
+ lemmas `prode_ge0`, `prode_fin_num`
56-
- in `probability.v`:
57-
+ lemma `expectation_def`
58-
+ notation `'M_`
59-
6034
- new file `independence.v`:
6135
+ lemma `expectationM_ge0`
6236
+ definition `independent_events`
6337
+ definition `mutual_independence`
6438
+ definition `independent_RVs`
6539
+ definition `independent_RVs2`
66-
+ lemmas `g_sigma_algebra_mapping_comp`, `g_sigma_algebra_mapping_funrpos`,
67-
`g_sigma_algebra_mapping_funrneg`
40+
+ lemmas `g_sigma_algebra_preimage_comp`, `g_sigma_algebra_preimage_funrpos`,
41+
`g_sigma_algebra_preimage_funrneg`
6842
+ lemmas `independent_RVs2_comp`, `independent_RVs2_funrposneg`,
6943
`independent_RVs2_funrnegpos`, `independent_RVs2_funrnegneg`,
7044
`independent_RVs2_funrpospos`

theories/independence.v

Lines changed: 54 additions & 53 deletions
Original file line numberDiff line numberDiff line change
@@ -2,10 +2,10 @@
22
From mathcomp Require Import all_ssreflect.
33
From mathcomp Require Import ssralg poly ssrnum ssrint interval finmap.
44
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
5-
From mathcomp Require Import cardinality fsbigop.
5+
From mathcomp Require Import cardinality fsbigop interval_inference.
66
From HB Require Import structures.
77
From mathcomp Require Import exp numfun lebesgue_measure lebesgue_integral.
8-
From mathcomp Require Import reals ereal signed topology normedtype sequences.
8+
From mathcomp Require Import reals ereal topology normedtype sequences.
99
From mathcomp Require Import esum measure exp numfun lebesgue_measure.
1010
From mathcomp Require Import lebesgue_integral kernel probability.
1111

@@ -213,7 +213,7 @@ Section mutual_independence_properties.
213213
Context {R : realType} d {T : measurableType d} (P : probability T R).
214214
Local Open Scope ereal_scope.
215215

216-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(i) *)
216+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(i) *)
217217
Lemma mutual_independence_fset {I0 : choiceType} (I : {fset I0})
218218
(F : I0 -> set_system T) :
219219
(forall i, i \in I -> F i `<=` measurable /\ (F i) [set: T]) ->
@@ -237,7 +237,7 @@ rewrite -big_seq => ->.
237237
by rewrite !big_seq; apply: eq_bigr => i iJ; rewrite /E' iJ.
238238
Qed.
239239

240-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(ii) *)
240+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(ii) *)
241241
Lemma mutual_independence_finiteS {I0 : choiceType} (I : set I0)
242242
(F : I0 -> set_system T) :
243243
mutual_independence P I F <->
@@ -255,7 +255,7 @@ split=> [i Ii|J JI E EF].
255255
by have [_] := indeF _ JI; exact.
256256
Qed.
257257

258-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(iii) *)
258+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(iii) *)
259259
Theorem mutual_independence_finite_g_sigma {I0 : choiceType} (I : set I0)
260260
(F : I0 -> set_system T) :
261261
(forall i, i \in I -> setI_closed (F i `|` [set set0])) ->
@@ -437,7 +437,7 @@ apply/negP/set0P; exists j; split => //.
437437
exact/set_mem.
438438
Qed.
439439

440-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(iv) *)
440+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(iv) *)
441441
Lemma mutual_independence_bigcup (K0 I0 : pointedType) (K : {fset K0})
442442
(I_ : K0 -> set I0) (I : set I0) (F : I0 -> set_system T) :
443443
trivIset [set` K] (fun i => I_ i) ->
@@ -482,28 +482,28 @@ Qed.
482482

483483
End mutual_independence_properties.
484484

485-
Section g_sigma_algebra_mapping_lemmas.
485+
Section g_sigma_algebra_preimage_lemmas.
486486
Context d {T : measurableType d} {R : realType}.
487487

488-
Lemma g_sigma_algebra_mapping_comp (X : {mfun T >-> R}) (f : R -> R) :
488+
Lemma g_sigma_algebra_preimage_comp (X : {mfun T >-> R}) (f : R -> R) :
489489
measurable_fun setT f ->
490-
g_sigma_algebra_mapping (f \o X)%R `<=` g_sigma_algebra_mapping X.
491-
Proof. exact: preimage_set_system_comp. Qed.
490+
g_sigma_algebra_preimage (f \o X)%R `<=` g_sigma_algebra_preimage X.
491+
Proof. exact: preimage_set_system_compS. Qed.
492492

493-
Lemma g_sigma_algebra_mapping_funrpos (X : {mfun T >-> R}) :
494-
g_sigma_algebra_mapping X^\+%R `<=` d.-measurable.
493+
Lemma g_sigma_algebra_preimage_funrpos (X : {mfun T >-> R}) :
494+
g_sigma_algebra_preimage X^\+%R `<=` d.-measurable.
495495
Proof.
496496
by move=> A/= -[B mB] <-; have := measurable_funrpos (measurable_funP X); exact.
497497
Qed.
498498

499-
Lemma g_sigma_algebra_mapping_funrneg (X : {mfun T >-> R}) :
500-
g_sigma_algebra_mapping X^\-%R `<=` d.-measurable.
499+
Lemma g_sigma_algebra_preimage_funrneg (X : {mfun T >-> R}) :
500+
g_sigma_algebra_preimage X^\-%R `<=` d.-measurable.
501501
Proof.
502502
by move=> A/= -[B mB] <-; have := measurable_funrneg (measurable_funP X); exact.
503503
Qed.
504504

505-
End g_sigma_algebra_mapping_lemmas.
506-
Arguments g_sigma_algebra_mapping_comp {d T R X} f.
505+
End g_sigma_algebra_preimage_lemmas.
506+
Arguments g_sigma_algebra_preimage_comp {d T R X} f.
507507

508508
Section independent_RVs.
509509
Context {R : realType} d (T : measurableType d).
@@ -513,7 +513,7 @@ Variable P : probability T R.
513513

514514
Definition independent_RVs (I : set I0)
515515
(X : forall i : I0, {mfun T >-> T' i}) : Prop :=
516-
mutual_independence P I (fun i => g_sigma_algebra_mapping (X i)).
516+
mutual_independence P I (fun i => g_sigma_algebra_preimage (X i)).
517517

518518
End independent_RVs.
519519

@@ -532,7 +532,7 @@ Context {I0 : choiceType}.
532532
Context {d' : I0 -> _} (T' : forall i : I0, measurableType (d' i)).
533533
Variable P : probability T R.
534534

535-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.16 *)
535+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.16 *)
536536
Theorem independent_generators (I : set I0) (F : forall i : I0, set_system (T' i))
537537
(X : forall i, {RV P >-> T' i}) :
538538
(forall i, i \in I -> setI_closed (F i)) ->
@@ -550,9 +550,9 @@ have closed_preimage i : I i -> setI_closed (preimage_set_system setT (X i) (F i
550550
- exact/mem_set.
551551
- by rewrite setTI.
552552
have gen_preimage i : I i ->
553-
<<s preimage_set_system setT (X i) (F i) >> = g_sigma_algebra_mapping (X i).
553+
<<s preimage_set_system setT (X i) (F i) >> = g_sigma_algebra_preimage (X i).
554554
move=> Ii.
555-
rewrite /g_sigma_algebra_mapping AsF; last exact/mem_set.
555+
rewrite /g_sigma_algebra_preimage AsF; last exact/mem_set.
556556
by rewrite -g_sigma_preimageE.
557557
rewrite /independent_RVs.
558558
suff: mutual_independence P I (fun i => <<s preimage_set_system setT (X i) (F i) >>).
@@ -576,78 +576,79 @@ Lemma independent_RVs2_comp (X Y : {RV P >-> R}) (f g : {mfun R >-> R}) :
576576
Proof.
577577
move=> indeXY; split => /=.
578578
- move=> [] _ /= A.
579-
+ by rewrite /g_sigma_algebra_mapping/= /preimage_set_system/= => -[B mB <-];
579+
+ by rewrite /g_sigma_algebra_preimage/= /preimage_set_system/= => -[B mB <-];
580580
exact/measurableT_comp.
581-
+ by rewrite /g_sigma_algebra_mapping/= /preimage_set_system/= => -[B mB <-];
581+
+ by rewrite /g_sigma_algebra_preimage/= /preimage_set_system/= => -[B mB <-];
582582
exact/measurableT_comp.
583583
- move=> J _ E JE.
584584
apply indeXY => //= i iJ; have := JE _ iJ.
585585
by move: i {iJ} =>[|]//=; rewrite !inE => Eg;
586-
exact: g_sigma_algebra_mapping_comp Eg.
586+
exact: g_sigma_algebra_preimage_comp Eg.
587587
Qed.
588588

589589
Lemma independent_RVs2_funrposneg (X Y : {RV P >-> R}) :
590590
independent_RVs2 P X Y -> independent_RVs2 P X^\+ Y^\-.
591591
Proof.
592592
move=> indeXY; split=> [[|]/= _|J J2 E JE].
593-
- exact: g_sigma_algebra_mapping_funrneg.
594-
- exact: g_sigma_algebra_mapping_funrpos.
593+
- exact: g_sigma_algebra_preimage_funrneg.
594+
- exact: g_sigma_algebra_preimage_funrpos.
595595
- apply indeXY => //= i iJ; have := JE _ iJ.
596596
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
597-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
597+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
598598
exact: measurable_funrneg.
599-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R) => //.
599+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R) => //.
600600
exact: measurable_funrpos.
601601
Qed.
602602

603603
Lemma independent_RVs2_funrnegpos (X Y : {RV P >-> R}) :
604604
independent_RVs2 P X Y -> independent_RVs2 P X^\- Y^\+.
605605
Proof.
606606
move=> indeXY; split=> [/= [|]// _ |J J2 E JE].
607-
- exact: g_sigma_algebra_mapping_funrpos.
608-
- exact: g_sigma_algebra_mapping_funrneg.
607+
- exact: g_sigma_algebra_preimage_funrpos.
608+
- exact: g_sigma_algebra_preimage_funrneg.
609609
- apply indeXY => //= i iJ; have := JE _ iJ.
610610
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
611-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
611+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
612612
exact: measurable_funrpos.
613-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
613+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
614614
exact: measurable_funrneg.
615615
Qed.
616616

617617
Lemma independent_RVs2_funrnegneg (X Y : {RV P >-> R}) :
618618
independent_RVs2 P X Y -> independent_RVs2 P X^\- Y^\-.
619619
Proof.
620620
move=> indeXY; split=> [/= [|]// _ |J J2 E JE].
621-
- exact: g_sigma_algebra_mapping_funrneg.
622-
- exact: g_sigma_algebra_mapping_funrneg.
621+
- exact: g_sigma_algebra_preimage_funrneg.
622+
- exact: g_sigma_algebra_preimage_funrneg.
623623
- apply indeXY => //= i iJ; have := JE _ iJ.
624624
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
625-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
625+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
626626
exact: measurable_funrneg.
627-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
627+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
628628
exact: measurable_funrneg.
629629
Qed.
630630

631631
Lemma independent_RVs2_funrpospos (X Y : {RV P >-> R}) :
632632
independent_RVs2 P X Y -> independent_RVs2 P X^\+ Y^\+.
633633
Proof.
634634
move=> indeXY; split=> [/= [|]//= _ |J J2 E JE].
635-
- exact: g_sigma_algebra_mapping_funrpos.
636-
- exact: g_sigma_algebra_mapping_funrpos.
635+
- exact: g_sigma_algebra_preimage_funrpos.
636+
- exact: g_sigma_algebra_preimage_funrpos.
637637
- apply indeXY => //= i iJ; have := JE _ iJ.
638638
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
639-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
639+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
640640
exact: measurable_funrpos.
641-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
641+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
642642
exact: measurable_funrpos.
643643
Qed.
644644

645645
End independent_RVs_lemmas.
646646

647-
Definition preimage_classes I (d : I -> measure_display)
648-
(Tn : forall k, semiRingOfSetsType (d k)) (T : Type) (fn : forall k, T -> Tn k) :=
649-
<<s \bigcup_k preimage_set_system setT (fn k) measurable >>.
650-
Arguments preimage_classes {I} d Tn {T} fn.
647+
Definition preimage_classes I0 (I : set I0) (d_ : forall i : I, measure_display)
648+
(T_ : forall k : I, semiRingOfSetsType (d_ k)) (T : Type)
649+
(f_ : forall k : I, T -> T_ k) :=
650+
<<s \bigcup_(k : I) preimage_set_system setT (f_ k) measurable >>.
651+
Arguments preimage_classes {I0} I d_ T_ {T} f_.
651652

652653
Lemma measurable_prod d [T : measurableType d] [R : realType] [D : set T] [I : eqType]
653654
(s : seq I) [h : I -> T -> R] :
@@ -717,7 +718,7 @@ rewrite /independent_RVs2 /independent_RVs /mutual_independence /= => -[_].
717718
move/(_ [fset false; true]%fset (@subsetT _ _)
718719
(fun b => if b then Y @^-1` B2 else X @^-1` B1)).
719720
rewrite !big_fsetU1 ?inE//= !big_seq_fset1/=.
720-
apply => -[|] /= _; rewrite !inE; rewrite /g_sigma_algebra_mapping.
721+
apply => -[|] /= _; rewrite !inE; rewrite /g_sigma_algebra_preimage.
721722
by exists B2 => //; rewrite setTI.
722723
by exists B1 => //; rewrite setTI.
723724
Qed.
@@ -958,23 +959,23 @@ pose AY := dyadic_approx setT (EFin \o Y).
958959
pose BX := integer_approx setT (EFin \o X).
959960
pose BY := integer_approx setT (EFin \o Y).
960961
have mA (Z : {RV P >-> R}) m k : (k < m * 2 ^ m)%N ->
961-
g_sigma_algebra_mapping Z (dyadic_approx setT (EFin \o Z) m k).
962-
move=> mk; rewrite /g_sigma_algebra_mapping /dyadic_approx mk setTI.
962+
g_sigma_algebra_preimage Z (dyadic_approx setT (EFin \o Z) m k).
963+
move=> mk; rewrite /g_sigma_algebra_preimage /dyadic_approx mk setTI.
963964
rewrite /preimage_set_system/=; exists [set` dyadic_itv R m k] => //.
964965
rewrite setTI/=; apply/seteqP; split => z/=.
965966
by rewrite inE/= => Zz; exists (Z z).
966967
by rewrite inE/= => -[r rmk] [<-].
967968
have mB (Z : {RV P >-> R}) k :
968-
g_sigma_algebra_mapping Z (integer_approx setT (EFin \o Z) k).
969-
rewrite /g_sigma_algebra_mapping /integer_approx setTI /preimage_set_system/=.
969+
g_sigma_algebra_preimage Z (integer_approx setT (EFin \o Z) k).
970+
rewrite /g_sigma_algebra_preimage /integer_approx setTI /preimage_set_system/=.
970971
by exists `[k%:R, +oo[%classic => //; rewrite setTI preimage_itvcy.
971972
have m1A (Z : {RV P >-> R}) : forall k, (k < n * 2 ^ n)%N ->
972973
measurable_fun setT
973-
(\1_(dyadic_approx setT (EFin \o Z) n k) : g_sigma_algebra_mappingType Z -> R).
974+
(\1_(dyadic_approx setT (EFin \o Z) n k) : g_sigma_algebra_preimageType Z -> R).
974975
move=> k kn.
975-
exact/(@measurable_indicP _ (g_sigma_algebra_mappingType Z))/mA.
976+
exact/(@measurable_indicP _ (g_sigma_algebra_preimageType Z))/mA.
976977
rewrite !inE => /orP[|]/eqP->{i} //=.
977-
have : @measurable_fun _ _ (g_sigma_algebra_mappingType X) _ setT (X_ n).
978+
have : @measurable_fun _ _ (g_sigma_algebra_preimageType X) _ setT (X_ n).
978979
rewrite nnsfun_approxE//.
979980
apply: measurable_funD => //=.
980981
apply: measurable_sum => //= k'; apply: measurable_funM => //.
@@ -983,7 +984,7 @@ rewrite !inE => /orP[|]/eqP->{i} //=.
983984
by apply: measurable_indic; exact: mB.
984985
rewrite /measurable_fun => /(_ measurableT _ (measurable_set1 x)).
985986
by rewrite setTI.
986-
have : @measurable_fun _ _ (g_sigma_algebra_mappingType Y) _ setT (Y_ n).
987+
have : @measurable_fun _ _ (g_sigma_algebra_preimageType Y) _ setT (Y_ n).
987988
rewrite nnsfun_approxE//.
988989
apply: measurable_funD => //=.
989990
apply: measurable_sum => //= k'; apply: measurable_funM => //.
@@ -1036,7 +1037,7 @@ exact/measurable_EFinP/measurable_funM.
10361037
Qed.
10371038

10381039
(* TODO: rename to expectationM when deprecation is removed *)
1039-
Lemma expectation_prod (X Y : {RV P >-> R}) :
1040+
Lemma expectation_mul (X Y : {RV P >-> R}) :
10401041
independent_RVs2 P X Y ->
10411042
P.-integrable setT (EFin \o X) -> P.-integrable setT (EFin \o Y) ->
10421043
'E_P [X * Y] = 'E_P [X] * 'E_P [Y].

0 commit comments

Comments
 (0)