@@ -94,7 +94,7 @@ case: (@Order.TotalTheory.arg_maxP _ _ 'I_p.+1 ord0
9494have pltpsni1: p < prime_seq n.+1.
9595 move: (valP n). rewrite leq_eqVlt => /orP [|nltp].
9696 rewrite eqSS => /eqP ->.
97- exact/mono_ext /leq_prime_seq.
97+ exact/mono_leq_infl /leq_prime_seq.
9898 have := contra (pptargmax (Ordinal nltp)).
9999 rewrite [(_ <= _)%O](leq_prime_seq (Ordinal nltp) n) ltnn => /(_ erefl).
100100 by rewrite ltnNge.
@@ -106,21 +106,21 @@ Qed.
106106
107107End prime_seq.
108108
109- Section DivergenceSumInversePrimeNumbers .
109+ Section dvg_sum_inv_prime_seq .
110110
111111Let P (k N : nat) :=
112112 [set n : 'I_N.+1 |all (fun p => p < prime_seq k) (primes n)]%SET.
113113Let G (k N : nat) := ~: P k N.
114114
115- Fact cardPcardG k N : #|G k N| + #|P k N| = N.+1.
115+ Let cardPcardG k N : #|G k N| + #|P k N| = N.+1.
116116Proof .
117117rewrite addnC.
118118have : (P k N) :|: (G k N) = [set : 'I_N.+1]%SET by rewrite finset.setUCr.
119119rewrite -cardsUI finset.setICr cards0.
120120by rewrite -[X in _ + _ = X]card_ord addn0 -cardsT => ->.
121121Qed .
122122
123- Fact cardG (R : realType) (k N : nat) :
123+ Let cardG (R : realType) (k N : nat) :
124124 (\sum_(k <= k0 <oo) ((prime_seq k0)%:R^-1 : R)%:E < (2^-1)%:E)%E
125125 -> k <= N.+1 -> ~~ odd N -> N > 0 -> (#|G k N| < (N./2)).
126126Proof .
@@ -148,7 +148,7 @@ suff cardEi : forall i, k <= i ->
148148 have ileqN : i < N.+1.
149149 apply: (leq_ltn_trans _ (ltn_ord x)).
150150 apply: (leq_trans _ (dvdn_leq xneq0 pidvdx)).
151- exact/mono_ext /leq_prime_seq.
151+ exact/mono_leq_infl /leq_prime_seq.
152152 exists (Ordinal ileqN) => /=; first by rewrite -leq_prime_seq.
153153 by rewrite inE mem_primes xneq0 pidvdx/= andbT -mem_prime_seq inE.
154154 apply: (leq_ltn_trans (card_big_setU _ _ E)).
@@ -281,8 +281,7 @@ rewrite val_insubd x3b3 /= => x2eqx3. move: x3b2.
281281by rewrite ltnS -x2eqx3.
282282Qed .
283283
284- Fact cardP (k : nat) :
285- #|P k (2 ^ (k.*2 + 2))| <= (2 ^ (k.*2 + 1)).+1.
284+ Let cardP (k : nat) : #|P k (2 ^ (k.*2 + 2))| <= (2 ^ (k.*2 + 1)).+1.
286285Proof .
287286set N := 2 ^ (k.*2 + 2).
288287set P' := fun k N => P k N :\ ord0.
@@ -313,7 +312,7 @@ have eqseq : forall n k, n < k ->
313312 by rewrite mem_primes => /andP[_ /andP[]].
314313 apply: (@leq_ltn_trans k0.-1); first by rewrite ltn_predRL.
315314 rewrite prednK ?(ltn_trans _ nlek)//.
316- exact/mono_ext /leq_prime_seq.
315+ exact/mono_leq_infl /leq_prime_seq.
317316have binB (n : 'I_N.+1) :
318317 (\prod_(i < k) (prime_seq i) ^ (logn (prime_seq i) n)./2) <
319318 (2 ^ (k + 1)).+1.
@@ -410,7 +409,7 @@ rewrite cardsX cardsE card_tuple card_bool cardsC1 card_ord.
410409by rewrite -expnD addnA addnn.
411410Qed .
412411
413- Theorem DivergenceSumInversePrimeNumbers (R : realType) :
412+ Theorem dvg_sum_inv_prime_seq (R : realType) :
414413 (\sum_(0 <= i < n) (((prime_seq i)%:R : R)^-1)%:E)%R @[n --> \oo] --> +oo%E.
415414Proof .
416415set un := fun i => (((prime_seq i)%:R : R)^-1)%:E.
@@ -453,4 +452,4 @@ apply: (@cardG R); first by move: Rklthalf; rewrite /un div1r.
453452- by rewrite /N expn_gt0.
454453Qed .
455454
456- End DivergenceSumInversePrimeNumbers .
455+ End dvg_sum_inv_prime_seq .
0 commit comments