Skip to content

Commit 5515349

Browse files
committed
review
1 parent ecf16b6 commit 5515349

File tree

3 files changed

+13
-13
lines changed

3 files changed

+13
-13
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -38,14 +38,15 @@
3838

3939
- in `constructive_ereal.v`:
4040
+ lemma `lt0_adde`
41+
4142
- in `unstable.v`
42-
+ lemmas `coprime_prodr`, `Gauss_dvd_prod`, `expn_prod`, `mono_ext`,
43+
+ lemmas `coprime_prodr`, `Gauss_dvd_prod`, `expn_prod`, `mono_leq_infl`,
4344
`card_big_setU`
4445

4546
- file `pnt.v`
4647
+ definitions `next_prime`, `prime_seq`
4748
+ lemmas `leq_prime_seq`, `mem_prime_seq`
48-
+ theorem `DivergenceSumInversePrimeNumbers`
49+
+ theorem `dvg_sum_inv_prime_seq`
4950

5051
### Changed
5152

classical/unstable.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ Qed.
138138
Definition monotonous d (T : porderType d) (pT : predType T) (A : pT) (f : T -> T) :=
139139
{in A &, {mono f : x y / (x <= y)%O}} \/ {in A &, {mono f : x y /~ (x <= y)%O}}.
140140

141-
Lemma mono_ext f : {mono f : m n / (m <= n)%N} -> forall n, (n <= f n)%N.
141+
Lemma mono_leq_infl f : {mono f : m n / (m <= n)%N} -> forall n, (n <= f n)%N.
142142
Proof.
143143
move=> fincr; elim=> [//| n HR]; rewrite (leq_ltn_trans HR)//.
144144
by rewrite ltn_neqAle fincr (inj_eq (incn_inj fincr)) -ltn_neqAle.

theories/showcase/pnt.v

Lines changed: 9 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -94,7 +94,7 @@ case: (@Order.TotalTheory.arg_maxP _ _ 'I_p.+1 ord0
9494
have pltpsni1: p < prime_seq n.+1.
9595
move: (valP n). rewrite leq_eqVlt => /orP [|nltp].
9696
rewrite eqSS => /eqP ->.
97-
exact/mono_ext/leq_prime_seq.
97+
exact/mono_leq_infl/leq_prime_seq.
9898
have := contra (pptargmax (Ordinal nltp)).
9999
rewrite [(_ <= _)%O](leq_prime_seq (Ordinal nltp) n) ltnn => /(_ erefl).
100100
by rewrite ltnNge.
@@ -106,21 +106,21 @@ Qed.
106106

107107
End prime_seq.
108108

109-
Section DivergenceSumInversePrimeNumbers.
109+
Section dvg_sum_inv_prime_seq.
110110

111111
Let P (k N : nat) :=
112112
[set n : 'I_N.+1 |all (fun p => p < prime_seq k) (primes n)]%SET.
113113
Let G (k N : nat) := ~: P k N.
114114

115-
Fact cardPcardG k N : #|G k N| + #|P k N| = N.+1.
115+
Let cardPcardG k N : #|G k N| + #|P k N| = N.+1.
116116
Proof.
117117
rewrite addnC.
118118
have : (P k N) :|: (G k N) = [set : 'I_N.+1]%SET by rewrite finset.setUCr.
119119
rewrite -cardsUI finset.setICr cards0.
120120
by rewrite -[X in _ + _ = X]card_ord addn0 -cardsT => ->.
121121
Qed.
122122

123-
Fact cardG (R : realType) (k N : nat) :
123+
Let cardG (R : realType) (k N : nat) :
124124
(\sum_(k <= k0 <oo) ((prime_seq k0)%:R^-1 : R)%:E < (2^-1)%:E)%E
125125
-> k <= N.+1 -> ~~ odd N -> N > 0 -> (#|G k N| < (N./2)).
126126
Proof.
@@ -148,7 +148,7 @@ suff cardEi : forall i, k <= i ->
148148
have ileqN : i < N.+1.
149149
apply: (leq_ltn_trans _ (ltn_ord x)).
150150
apply: (leq_trans _ (dvdn_leq xneq0 pidvdx)).
151-
exact/mono_ext/leq_prime_seq.
151+
exact/mono_leq_infl/leq_prime_seq.
152152
exists (Ordinal ileqN) => /=; first by rewrite -leq_prime_seq.
153153
by rewrite inE mem_primes xneq0 pidvdx/= andbT -mem_prime_seq inE.
154154
apply: (leq_ltn_trans (card_big_setU _ _ E)).
@@ -281,8 +281,7 @@ rewrite val_insubd x3b3 /= => x2eqx3. move: x3b2.
281281
by rewrite ltnS -x2eqx3.
282282
Qed.
283283

284-
Fact cardP (k : nat) :
285-
#|P k (2 ^ (k.*2 + 2))| <= (2 ^ (k.*2 + 1)).+1.
284+
Let cardP (k : nat) : #|P k (2 ^ (k.*2 + 2))| <= (2 ^ (k.*2 + 1)).+1.
286285
Proof.
287286
set N := 2 ^ (k.*2 + 2).
288287
set P' := fun k N => P k N :\ ord0.
@@ -313,7 +312,7 @@ have eqseq : forall n k, n < k ->
313312
by rewrite mem_primes => /andP[_ /andP[]].
314313
apply: (@leq_ltn_trans k0.-1); first by rewrite ltn_predRL.
315314
rewrite prednK ?(ltn_trans _ nlek)//.
316-
exact/mono_ext/leq_prime_seq.
315+
exact/mono_leq_infl/leq_prime_seq.
317316
have binB (n : 'I_N.+1) :
318317
(\prod_(i < k) (prime_seq i) ^ (logn (prime_seq i) n)./2) <
319318
(2 ^ (k + 1)).+1.
@@ -410,7 +409,7 @@ rewrite cardsX cardsE card_tuple card_bool cardsC1 card_ord.
410409
by rewrite -expnD addnA addnn.
411410
Qed.
412411

413-
Theorem DivergenceSumInversePrimeNumbers (R : realType) :
412+
Theorem dvg_sum_inv_prime_seq (R : realType) :
414413
(\sum_(0 <= i < n) (((prime_seq i)%:R : R)^-1)%:E)%R @[n --> \oo] --> +oo%E.
415414
Proof.
416415
set un := fun i => (((prime_seq i)%:R : R)^-1)%:E.
@@ -453,4 +452,4 @@ apply: (@cardG R); first by move: Rklthalf; rewrite /un div1r.
453452
- by rewrite /N expn_gt0.
454453
Qed.
455454

456-
End DivergenceSumInversePrimeNumbers.
455+
End dvg_sum_inv_prime_seq.

0 commit comments

Comments
 (0)