Skip to content

Commit a51ff17

Browse files
committed
renaming
1 parent d669c8e commit a51ff17

File tree

4 files changed

+100
-133
lines changed

4 files changed

+100
-133
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 5 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -57,17 +57,6 @@
5757
+ lemmas `RabsE`, `RdistE`, `sum_f_R0E`, `factE`
5858

5959
- new file `internal_Eqdep_dec.v` (don't use, internal, to be removed)
60-
- in `normedtype.v`:
61-
+ lemma `scaler1`
62-
63-
- in `derive.v`:
64-
+ lemmas `horner0_ext`, `hornerD_ext`, `horner_scale_ext`, `hornerC_ext`,
65-
`derivable_horner`, `derivE`, `continuous_horner`
66-
+ instance `is_derive_poly`
67-
- in `mathcomp_extra.v`:
68-
+ lemma `partition_disjoint_bigfcup`
69-
- in `lebesgue_measure.v`:
70-
+ lemma `measurable_indicP`
7160

7261
- in `numfun.v`:
7362
+ defintions `funrpos`, `funrneg` with notations `^\+` and `^\-`
@@ -79,35 +68,20 @@
7968

8069
- in `measure.v`:
8170
+ lemma `preimage_class_comp`
82-
+ defintions `mapping_display`, `g_sigma_algebra_mappingType`, `g_sigma_algebra_mapping`,
83-
notations `.-mapping`, `.-mapping.-measurable`
71+
+ defintions `preimage_display`, `g_sigma_algebra_preimageType`, `g_sigma_algebra_preimage`,
72+
notations `.-preimage`, `.-preimage.-measurable`
8473

85-
- in `lebesgue_measure.v`:
74+
- in `measurable_realfun.v`:
8675
+ lemmas `measurable_funrpos`, `measurable_funrneg`
8776

88-
- in `lebesgue_integral.v`:
89-
+ lemmas `integral_fin_num_abs`, `Rintegral_cst`, `le_Rintegral`
90-
91-
- new file `pi_irrational.v`:
92-
+ lemmas `measurable_poly`
93-
+ definition `rational`
94-
+ module `pi_irrational`
95-
+ lemma `pi_irrationnal`
96-
- in `constructive_ereal.v`:
97-
+ notations `\prod` in scope ereal_scope
98-
+ lemmas `prode_ge0`, `prode_fin_num`
99-
- in `probability.v`:
100-
+ lemma `expectation_def`
101-
+ notation `'M_`
102-
10377
- new file `independence.v`:
10478
+ lemma `expectationM_ge0`
10579
+ definition `independent_events`
10680
+ definition `mutual_independence`
10781
+ definition `independent_RVs`
10882
+ definition `independent_RVs2`
109-
+ lemmas `g_sigma_algebra_mapping_comp`, `g_sigma_algebra_mapping_funrpos`,
110-
`g_sigma_algebra_mapping_funrneg`
83+
+ lemmas `g_sigma_algebra_preimage_comp`, `g_sigma_algebra_preimage_funrpos`,
84+
`g_sigma_algebra_preimage_funrneg`
11185
+ lemmas `independent_RVs2_comp`, `independent_RVs2_funrposneg`,
11286
`independent_RVs2_funrnegpos`, `independent_RVs2_funrnegneg`,
11387
`independent_RVs2_funrpospos`

theories/independence.v

Lines changed: 53 additions & 60 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
From mathcomp Require Import all_ssreflect interval_inference.
33
From mathcomp Require Import ssralg poly ssrnum ssrint interval finmap.
44
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
5-
From mathcomp Require Import cardinality fsbigop.
5+
From mathcomp Require Import cardinality fsbigop interval_inference.
66
From HB Require Import structures.
77
From mathcomp Require Import exp numfun lebesgue_measure lebesgue_integral.
88
From mathcomp Require Import reals ereal topology normedtype sequences.
@@ -214,7 +214,7 @@ Section mutual_independence_properties.
214214
Context {R : realType} d {T : measurableType d} (P : probability T R).
215215
Local Open Scope ereal_scope.
216216

217-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(i) *)
217+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(i) *)
218218
Lemma mutual_independence_fset {I0 : choiceType} (I : {fset I0})
219219
(F : I0 -> set_system T) :
220220
(forall i, i \in I -> F i `<=` measurable /\ (F i) [set: T]) ->
@@ -238,7 +238,7 @@ rewrite -big_seq => ->.
238238
by rewrite !big_seq; apply: eq_bigr => i iJ; rewrite /E' iJ.
239239
Qed.
240240

241-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(ii) *)
241+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(ii) *)
242242
Lemma mutual_independence_finiteS {I0 : choiceType} (I : set I0)
243243
(F : I0 -> set_system T) :
244244
mutual_independence P I F <->
@@ -256,7 +256,7 @@ split=> [i Ii|J JI E EF].
256256
by have [_] := indeF _ JI; exact.
257257
Qed.
258258

259-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(iii) *)
259+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(iii) *)
260260
Theorem mutual_independence_finite_g_sigma {I0 : choiceType} (I : set I0)
261261
(F : I0 -> set_system T) :
262262
(forall i, i \in I -> setI_closed (F i `|` [set set0])) ->
@@ -438,7 +438,7 @@ apply/negP/set0P; exists j; split => //.
438438
exact/set_mem.
439439
Qed.
440440

441-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(iv) *)
441+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(iv) *)
442442
Lemma mutual_independence_bigcup (K0 I0 : pointedType) (K : {fset K0})
443443
(I_ : K0 -> set I0) (I : set I0) (F : I0 -> set_system T) :
444444
trivIset [set` K] (fun i => I_ i) ->
@@ -483,36 +483,28 @@ Qed.
483483

484484
End mutual_independence_properties.
485485

486-
Section g_sigma_algebra_mapping_lemmas.
486+
Section g_sigma_algebra_preimage_lemmas.
487487
Context d {T : measurableType d} {R : realType}.
488488

489-
Lemma g_sigma_algebra_mapping_comp (X : {mfun T >-> R}) (f : R -> R) :
489+
Lemma g_sigma_algebra_preimage_comp (X : {mfun T >-> R}) (f : R -> R) :
490490
measurable_fun setT f ->
491-
g_sigma_algebra_mapping (f \o X)%R `<=` g_sigma_algebra_mapping X.
492-
Proof.
493-
move=> mf.
494-
rewrite /g_sigma_algebra_mapping.
495-
rewrite preimage_set_system_comp.
496-
move=> A /= [] B [C mC <-{B}] <-{A}.
497-
red.
498-
exists ([set: R] `&` f @^-1` C) => //.
499-
by apply: mf.
500-
Qed.
491+
g_sigma_algebra_preimage (f \o X)%R `<=` g_sigma_algebra_preimage X.
492+
Proof. exact: preimage_set_system_compS. Qed.
501493

502-
Lemma g_sigma_algebra_mapping_funrpos (X : {mfun T >-> R}) :
503-
g_sigma_algebra_mapping X^\+%R `<=` d.-measurable.
494+
Lemma g_sigma_algebra_preimage_funrpos (X : {mfun T >-> R}) :
495+
g_sigma_algebra_preimage X^\+%R `<=` d.-measurable.
504496
Proof.
505497
by move=> A/= -[B mB] <-; have := measurable_funrpos (measurable_funP X); exact.
506498
Qed.
507499

508-
Lemma g_sigma_algebra_mapping_funrneg (X : {mfun T >-> R}) :
509-
g_sigma_algebra_mapping X^\-%R `<=` d.-measurable.
500+
Lemma g_sigma_algebra_preimage_funrneg (X : {mfun T >-> R}) :
501+
g_sigma_algebra_preimage X^\-%R `<=` d.-measurable.
510502
Proof.
511503
by move=> A/= -[B mB] <-; have := measurable_funrneg (measurable_funP X); exact.
512504
Qed.
513505

514-
End g_sigma_algebra_mapping_lemmas.
515-
Arguments g_sigma_algebra_mapping_comp {d T R X} f.
506+
End g_sigma_algebra_preimage_lemmas.
507+
Arguments g_sigma_algebra_preimage_comp {d T R X} f.
516508

517509
Section independent_RVs.
518510
Context {R : realType} d (T : measurableType d).
@@ -522,7 +514,7 @@ Variable P : probability T R.
522514

523515
Definition independent_RVs (I : set I0)
524516
(X : forall i : I0, {mfun T >-> T' i}) : Prop :=
525-
mutual_independence P I (fun i => g_sigma_algebra_mapping (X i)).
517+
mutual_independence P I (fun i => g_sigma_algebra_preimage (X i)).
526518

527519
End independent_RVs.
528520

@@ -541,7 +533,7 @@ Context {I0 : choiceType}.
541533
Context {d' : I0 -> _} (T' : forall i : I0, measurableType (d' i)).
542534
Variable P : probability T R.
543535

544-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.16 *)
536+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.16 *)
545537
Theorem independent_generators (I : set I0) (F : forall i : I0, set_system (T' i))
546538
(X : forall i, {RV P >-> T' i}) :
547539
(forall i, i \in I -> setI_closed (F i)) ->
@@ -559,9 +551,9 @@ have closed_preimage i : I i -> setI_closed (preimage_set_system setT (X i) (F i
559551
- exact/mem_set.
560552
- by rewrite setTI.
561553
have gen_preimage i : I i ->
562-
<<s preimage_set_system setT (X i) (F i) >> = g_sigma_algebra_mapping (X i).
554+
<<s preimage_set_system setT (X i) (F i) >> = g_sigma_algebra_preimage (X i).
563555
move=> Ii.
564-
rewrite /g_sigma_algebra_mapping AsF; last exact/mem_set.
556+
rewrite /g_sigma_algebra_preimage AsF; last exact/mem_set.
565557
by rewrite -g_sigma_preimageE.
566558
rewrite /independent_RVs.
567559
suff: mutual_independence P I (fun i => <<s preimage_set_system setT (X i) (F i) >>).
@@ -585,78 +577,79 @@ Lemma independent_RVs2_comp (X Y : {RV P >-> R}) (f g : {mfun R >-> R}) :
585577
Proof.
586578
move=> indeXY; split => /=.
587579
- move=> [] _ /= A.
588-
+ by rewrite /g_sigma_algebra_mapping/= /preimage_set_system/= => -[B mB <-];
580+
+ by rewrite /g_sigma_algebra_preimage/= /preimage_set_system/= => -[B mB <-];
589581
exact/measurableT_comp.
590-
+ by rewrite /g_sigma_algebra_mapping/= /preimage_set_system/= => -[B mB <-];
582+
+ by rewrite /g_sigma_algebra_preimage/= /preimage_set_system/= => -[B mB <-];
591583
exact/measurableT_comp.
592584
- move=> J _ E JE.
593585
apply indeXY => //= i iJ; have := JE _ iJ.
594586
by move: i {iJ} =>[|]//=; rewrite !inE => Eg;
595-
exact: g_sigma_algebra_mapping_comp Eg.
587+
exact: g_sigma_algebra_preimage_comp Eg.
596588
Qed.
597589

598590
Lemma independent_RVs2_funrposneg (X Y : {RV P >-> R}) :
599591
independent_RVs2 P X Y -> independent_RVs2 P X^\+ Y^\-.
600592
Proof.
601593
move=> indeXY; split=> [[|]/= _|J J2 E JE].
602-
- exact: g_sigma_algebra_mapping_funrneg.
603-
- exact: g_sigma_algebra_mapping_funrpos.
594+
- exact: g_sigma_algebra_preimage_funrneg.
595+
- exact: g_sigma_algebra_preimage_funrpos.
604596
- apply indeXY => //= i iJ; have := JE _ iJ.
605597
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
606-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
598+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
607599
exact: measurable_funrneg.
608-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R) => //.
600+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R) => //.
609601
exact: measurable_funrpos.
610602
Qed.
611603

612604
Lemma independent_RVs2_funrnegpos (X Y : {RV P >-> R}) :
613605
independent_RVs2 P X Y -> independent_RVs2 P X^\- Y^\+.
614606
Proof.
615607
move=> indeXY; split=> [/= [|]// _ |J J2 E JE].
616-
- exact: g_sigma_algebra_mapping_funrpos.
617-
- exact: g_sigma_algebra_mapping_funrneg.
608+
- exact: g_sigma_algebra_preimage_funrpos.
609+
- exact: g_sigma_algebra_preimage_funrneg.
618610
- apply indeXY => //= i iJ; have := JE _ iJ.
619611
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
620-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
612+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
621613
exact: measurable_funrpos.
622-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
614+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
623615
exact: measurable_funrneg.
624616
Qed.
625617

626618
Lemma independent_RVs2_funrnegneg (X Y : {RV P >-> R}) :
627619
independent_RVs2 P X Y -> independent_RVs2 P X^\- Y^\-.
628620
Proof.
629621
move=> indeXY; split=> [/= [|]// _ |J J2 E JE].
630-
- exact: g_sigma_algebra_mapping_funrneg.
631-
- exact: g_sigma_algebra_mapping_funrneg.
622+
- exact: g_sigma_algebra_preimage_funrneg.
623+
- exact: g_sigma_algebra_preimage_funrneg.
632624
- apply indeXY => //= i iJ; have := JE _ iJ.
633625
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
634-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
626+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
635627
exact: measurable_funrneg.
636-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
628+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
637629
exact: measurable_funrneg.
638630
Qed.
639631

640632
Lemma independent_RVs2_funrpospos (X Y : {RV P >-> R}) :
641633
independent_RVs2 P X Y -> independent_RVs2 P X^\+ Y^\+.
642634
Proof.
643635
move=> indeXY; split=> [/= [|]//= _ |J J2 E JE].
644-
- exact: g_sigma_algebra_mapping_funrpos.
645-
- exact: g_sigma_algebra_mapping_funrpos.
636+
- exact: g_sigma_algebra_preimage_funrpos.
637+
- exact: g_sigma_algebra_preimage_funrpos.
646638
- apply indeXY => //= i iJ; have := JE _ iJ.
647639
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
648-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
640+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
649641
exact: measurable_funrpos.
650-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
642+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
651643
exact: measurable_funrpos.
652644
Qed.
653645

654646
End independent_RVs_lemmas.
655647

656-
Definition preimage_classes I (d : I -> measure_display)
657-
(Tn : forall k, semiRingOfSetsType (d k)) (T : Type) (fn : forall k, T -> Tn k) :=
658-
<<s \bigcup_k preimage_set_system setT (fn k) measurable >>.
659-
Arguments preimage_classes {I} d Tn {T} fn.
648+
Definition preimage_classes I0 (I : set I0) (d_ : forall i : I, measure_display)
649+
(T_ : forall k : I, semiRingOfSetsType (d_ k)) (T : Type)
650+
(f_ : forall k : I, T -> T_ k) :=
651+
<<s \bigcup_(k : I) preimage_set_system setT (f_ k) measurable >>.
652+
Arguments preimage_classes {I0} I d_ T_ {T} f_.
660653

661654
Lemma measurable_prod d [T : measurableType d] [R : realType] [D : set T] [I : eqType]
662655
(s : seq I) [h : I -> T -> R] :
@@ -726,7 +719,7 @@ rewrite /independent_RVs2 /independent_RVs /mutual_independence /= => -[_].
726719
move/(_ [fset false; true]%fset (@subsetT _ _)
727720
(fun b => if b then Y @^-1` B2 else X @^-1` B1)).
728721
rewrite !big_fsetU1 ?inE//= !big_seq_fset1/=.
729-
apply => -[|] /= _; rewrite !inE; rewrite /g_sigma_algebra_mapping.
722+
apply => -[|] /= _; rewrite !inE; rewrite /g_sigma_algebra_preimage.
730723
by exists B2 => //; rewrite setTI.
731724
by exists B1 => //; rewrite setTI.
732725
Qed.
@@ -967,23 +960,23 @@ pose AY := dyadic_approx setT (EFin \o Y).
967960
pose BX := integer_approx setT (EFin \o X).
968961
pose BY := integer_approx setT (EFin \o Y).
969962
have mA (Z : {RV P >-> R}) m k : (k < m * 2 ^ m)%N ->
970-
g_sigma_algebra_mapping Z (dyadic_approx setT (EFin \o Z) m k).
971-
move=> mk; rewrite /g_sigma_algebra_mapping /dyadic_approx mk setTI.
963+
g_sigma_algebra_preimage Z (dyadic_approx setT (EFin \o Z) m k).
964+
move=> mk; rewrite /g_sigma_algebra_preimage /dyadic_approx mk setTI.
972965
rewrite /preimage_set_system/=; exists [set` dyadic_itv R m k] => //.
973966
rewrite setTI/=; apply/seteqP; split => z/=.
974967
by rewrite inE/= => Zz; exists (Z z).
975968
by rewrite inE/= => -[r rmk] [<-].
976969
have mB (Z : {RV P >-> R}) k :
977-
g_sigma_algebra_mapping Z (integer_approx setT (EFin \o Z) k).
978-
rewrite /g_sigma_algebra_mapping /integer_approx setTI /preimage_set_system/=.
970+
g_sigma_algebra_preimage Z (integer_approx setT (EFin \o Z) k).
971+
rewrite /g_sigma_algebra_preimage /integer_approx setTI /preimage_set_system/=.
979972
by exists `[k%:R, +oo[%classic => //; rewrite setTI preimage_itvcy.
980973
have m1A (Z : {RV P >-> R}) : forall k, (k < n * 2 ^ n)%N ->
981974
measurable_fun setT
982-
(\1_(dyadic_approx setT (EFin \o Z) n k) : g_sigma_algebra_mappingType Z -> R).
975+
(\1_(dyadic_approx setT (EFin \o Z) n k) : g_sigma_algebra_preimageType Z -> R).
983976
move=> k kn.
984-
exact/(@measurable_indicP _ (g_sigma_algebra_mappingType Z))/mA.
977+
exact/(@measurable_indicP _ (g_sigma_algebra_preimageType Z))/mA.
985978
rewrite !inE => /orP[|]/eqP->{i} //=.
986-
have : @measurable_fun _ _ (g_sigma_algebra_mappingType X) _ setT (X_ n).
979+
have : @measurable_fun _ _ (g_sigma_algebra_preimageType X) _ setT (X_ n).
987980
rewrite nnsfun_approxE//.
988981
apply: measurable_funD => //=.
989982
apply: measurable_sum => //= k'; apply: measurable_funM => //.
@@ -992,7 +985,7 @@ rewrite !inE => /orP[|]/eqP->{i} //=.
992985
by apply: measurable_indic; exact: mB.
993986
rewrite /measurable_fun => /(_ measurableT _ (measurable_set1 x)).
994987
by rewrite setTI.
995-
have : @measurable_fun _ _ (g_sigma_algebra_mappingType Y) _ setT (Y_ n).
988+
have : @measurable_fun _ _ (g_sigma_algebra_preimageType Y) _ setT (Y_ n).
996989
rewrite nnsfun_approxE//.
997990
apply: measurable_funD => //=.
998991
apply: measurable_sum => //= k'; apply: measurable_funM => //.
@@ -1053,7 +1046,7 @@ exact/measurable_EFinP/measurable_funM.
10531046
Qed.
10541047

10551048
(* TODO: rename to expectationM when deprecation is removed *)
1056-
Lemma expectation_prod (X Y : {RV P >-> R}) :
1049+
Lemma expectation_mul (X Y : {RV P >-> R}) :
10571050
independent_RVs2 P X Y ->
10581051
(X : _ -> _) \in Lfun P 1 -> (Y : _ -> _) \in Lfun P 1 ->
10591052
'E_P [X * Y] = 'E_P [X] * 'E_P [Y].

0 commit comments

Comments
 (0)