Skip to content

Commit a645da6

Browse files
TragicusLucasMalaizieraffeldt-aist
authored
Divergence of the sum of the reciprocal of primes (#1705)
* Starting PNT Proof Prime numbers sequence Divergence of the sum of inverse of the prime numbers Abel transformation (discrete and continuous) First Tchebychev function majoration --------- Co-authored-by: LucasMalaizier <lucasmalaizier@PCLucas> Co-authored-by: Reynald Affeldt <[email protected]>
1 parent 1c65191 commit a645da6

File tree

4 files changed

+520
-0
lines changed

4 files changed

+520
-0
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,15 @@
3939
- in `constructive_ereal.v`:
4040
+ lemma `lt0_adde`
4141

42+
- in `unstable.v`
43+
+ lemmas `coprime_prodr`, `Gauss_dvd_prod`, `expn_prod`, `mono_leq_infl`,
44+
`card_big_setU`
45+
46+
- file `pnt.v`
47+
+ definitions `next_prime`, `prime_seq`
48+
+ lemmas `leq_prime_seq`, `mem_prime_seq`
49+
+ theorem `dvg_sum_inv_prime_seq`
50+
4251
### Changed
4352

4453
- in `lebesgue_stieltjes_measure.v` specialized from `numFieldType` to `realFieldType`:

_CoqProject

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -120,5 +120,6 @@ theories/kernel.v
120120
theories/pi_irrational.v
121121
theories/gauss_integral.v
122122
theories/showcase/summability.v
123+
theories/showcase/pnt.v
123124
analysis_stdlib/Rstruct_topology.v
124125
analysis_stdlib/showcase/uniform_bigO.v

classical/unstable.v

Lines changed: 55 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,47 @@ Unset Printing Implicit Defensive.
3535
Import Order.TTheory GRing.Theory Num.Theory.
3636
Local Open Scope ring_scope.
3737

38+
Lemma coprime_prodr (I : Type) (r : seq I) (P : {pred I}) (F : I -> nat) (a : I)
39+
(l : seq I) :
40+
all (coprime (F a)) [seq F i | i <- [seq i <- l | P i]] ->
41+
coprime (F a) (\prod_(j <- l | P j) F j).
42+
Proof.
43+
elim: l => /= [_|h t ih]; first by rewrite big_nil coprimen1.
44+
rewrite big_cons; case: ifPn => // Ph.
45+
rewrite map_cons => /= /andP[FaFh FatP].
46+
by rewrite coprimeMr FaFh/= ih.
47+
Qed.
48+
49+
Lemma Gauss_dvd_prod (I : eqType) (r : seq I) (P : {pred I}) (F : I -> nat)
50+
(n : nat) :
51+
pairwise coprime [seq F i | i <- [seq i <- r | P i]] ->
52+
reflect (forall i, i \in r -> P i -> F i %| n)
53+
(\prod_(i <- r | P i) F i %| n).
54+
Proof.
55+
elim: r => /= [_|a l HI].
56+
by rewrite big_nil dvd1n; apply: ReflectT => i; rewrite in_nil.
57+
rewrite big_cons; case: ifP => [Pa|nPa]; last first.
58+
move/HI/equivP; apply; split=> [Fidvdn i|Fidvdn i il].
59+
by rewrite in_cons => /predU1P[->|]; [rewrite nPa|exact: Fidvdn].
60+
by apply: Fidvdn; rewrite in_cons il orbT.
61+
rewrite map_cons pairwise_cons => /andP[allcoprimea pairwisecoprime].
62+
rewrite Gauss_dvd; last exact: coprime_prodr.
63+
apply: (equivP (andPP idP (HI pairwisecoprime))).
64+
split=> [[Fadvdn Fidvdn] i|Fidvdn].
65+
by rewrite in_cons => /predU1P[->//|]; exact: Fidvdn.
66+
split=> [|i il].
67+
by apply: Fidvdn => //; exact: mem_head.
68+
by apply: Fidvdn; rewrite in_cons il orbT.
69+
Qed.
70+
71+
Lemma expn_prod (I : eqType) (r : seq I) (P : {pred I}) (F : I -> nat)
72+
(n : nat) :
73+
((\prod_(i <- r | P i) F i) ^ n = \prod_(i <- r | P i) (F i) ^ n)%N.
74+
Proof.
75+
elim: r => [|a l]; first by rewrite !big_nil exp1n.
76+
by rewrite !big_cons; case: ifPn => // Pa <-; rewrite expnMn.
77+
Qed.
78+
3879
Section max_min.
3980
Variable R : realFieldType.
4081

@@ -97,6 +138,12 @@ Qed.
97138
Definition monotonous d (T : porderType d) (pT : predType T) (A : pT) (f : T -> T) :=
98139
{in A &, {mono f : x y / (x <= y)%O}} \/ {in A &, {mono f : x y /~ (x <= y)%O}}.
99140

141+
Lemma mono_leq_infl f : {mono f : m n / (m <= n)%N} -> forall n, (n <= f n)%N.
142+
Proof.
143+
move=> fincr; elim=> [//| n HR]; rewrite (leq_ltn_trans HR)//.
144+
by rewrite ltn_neqAle fincr (inj_eq (incn_inj fincr)) -ltn_neqAle.
145+
Qed.
146+
100147
(* NB: these lemmas have been introduced to develop the theory of bounded variation *)
101148
Section path_lt.
102149
Context d {T : orderType d}.
@@ -177,6 +224,14 @@ Arguments big_rmcond_in {R idx op I r} P.
177224

178225
Reserved Notation "`1- x" (format "`1- x", at level 2).
179226

227+
Lemma card_big_setU (I : Type) (T : finType) (r : seq I) (P : {pred I})
228+
(F : I -> {set T}) :
229+
(#|\bigcup_(i <- r | P i) F i| <= \sum_(i <- r | P i) #|F i|)%N.
230+
Proof.
231+
elim/big_ind2 : _ => // [|m A n B Am Bn]; first by rewrite cards0.
232+
by rewrite (leq_trans (leq_card_setU _ _))// leq_add.
233+
Qed.
234+
180235
Section onem.
181236
Variable R : numDomainType.
182237
Implicit Types r : R.

0 commit comments

Comments
 (0)