@@ -23,6 +23,25 @@ I don't want the canonical lmodtype structure on C,
2323Therefore this is based on a fork of real-closed *)
2424HB.instance Definition _ (R : rcfType) := NormedModule.copy R[i] R[i]^o.
2525
26+ HB.instance Definition _ (R : rcfType) := Uniform.copy (Rcomplex R) R[i].
27+ HB.instance Definition _ (R : rcfType) := Pointed.copy (Rcomplex R) R[i].
28+
29+ Section Rcomplex_NormedModType.
30+ Variable (R : rcfType).
31+ HB.howto Rcomplex normedModType 11.
32+
33+ Definition ball : R -> Rcomplex R -> R -> Prop
34+ - ball_center_subproof : forall (x : M) (e : R), 0 < e -> ball x e x
35+ - ball_sym_subproof : forall (x y : M) (e : R), ball x e y -> ball y e x
36+ - ball_triangle_subproof :
37+ forall (x y z : M) (e1 e2 : R),
38+ ball x e1 y -> ball y e2 z -> ball x (e1 + e2)%E z
39+ - entourageE_subproof : entourage = entourage_ ball
40+
41+ HB.about Uniform_isPseudoMetric.Build.
42+ ; NormedZmod_PseudoMetric_eq;
43+ PseudoMetricNormedZmod_Lmodule_isNormedModule
44+
2645HB.factory Record Normed_And_Lmodule_isNormedModule (K : numFieldType) R of @Num.NormedZmodule K R & GRing.Lmodule K R := {
2746 normrZ : forall (l : K) (x : R), normr (l *: x) = normr l * normr x;
2847}.
@@ -239,15 +258,15 @@ Lemma real_normc_ler (x y : R) :
239258Proof .
240259rewrite /normc /= -ler_sqr ?nnegrE ?normr_ge0 ?sqrtr_ge0 //.
241260rewrite sqr_sqrtr ?addr_ge0 ?sqr_ge0 ?real_normK //=.
242- by rewrite ler_addl ?sqr_ge0.
261+ by rewrite lerDl ?sqr_ge0.
243262Qed .
244263
245264Lemma im_normc_ler (x y : R) :
246265 `|y| <= normc (x +i* y).
247266Proof .
248267rewrite /normc /= -ler_sqr ?nnegrE ?normr_ge0 ?sqrtr_ge0 //.
249268rewrite sqr_sqrtr ?addr_ge0 ?sqr_ge0 ?real_normK //=.
250- by rewrite ler_addr ?sqr_ge0.
269+ by rewrite lerDr ?sqr_ge0.
251270Qed .
252271
253272End complex_extras.
@@ -403,6 +422,14 @@ have -> : (fun h : C => h^-1 *: ((f (c + h) - f c))) @ (realC @ (dnbhs 0)) =
403422 \o realC @ (dnbhs (0 : R)) by [].
404423suff -> : ( (fun h : C => h^-1 *: (f (c + h) - f c)) \o realC)
405424= (fun h : R => h^-1 *: ((f%:Rfun \o shift c) (h *: (1%:Rc)) - f c : Rcomplex _) ) :> (R -> C) .
425+ STOP.
426+ rewrite /=.
427+ f_equal => /=.
428+ Set Printing All.
429+ Search lim Logic.eq .
430+ Search (lim _ = lim _).
431+ Set Printing All.
432+ apply: lim_eq.
406433 admit.
407434apply: funext => h /=.
408435by rewrite Inv_realC /= -!scalecr realC_alg [X in f X]addrC.
0 commit comments