@@ -180,7 +180,8 @@ Definition sdist (x : sorgenfrey) : R :=
180180 (if dr x == set0 then 1 else inf (dr x)).
181181
182182From mathcomp Require Import topology normedtype.
183- Let Rtopo := num_topology.numFieldTopology.Real_sort__canonical__topology_structure_Topological R.
183+ Let Rtopo := num_topology.numFieldTopology
184+ .Real_sort__canonical__topology_structure_Topological R.
184185
185186Local Lemma dlE x : dl x = [set shift x (- y) | y in E] `&` `[0, +oo[.
186187Proof .
@@ -280,10 +281,10 @@ apply/seteqP; rewrite /dl; split => t /= [].
280281 elim: (xzNE (z-t)); last by rewrite -inE.
281282 by rewrite /= in_itv /= ztx gerBl.
282283 exists (x - (z-t)).
283- by rewrite subr_ge0 opprD addrA subrr add0r opprK .
284- by rewrite (addrC z) opprD opprK !addrA subrK addrC addKr .
284+ by rewrite subKr subr_ge0 .
285+ by rewrite addrAC (addrC x) subrK subKr .
285286move=> w [] xwE w0 <-.
286- by rewrite ! opprD (addrCA z) !addrA addrK addrC opprK subr_ge0 ler_wpDl // ltW.
287+ by rewrite opprD opprB addrC !addrA subrK addrC subr_ge0 ler_wpDl // ltW.
287288Qed .
288289
289290Let dr_shift x z :
@@ -296,11 +297,10 @@ apply/seteqP; rewrite /dr; split => t /= [].
296297 elim: (xzNE (x+t)); last by rewrite -inE.
297298 by rewrite /= in_itv /= zxt ltrDl t0.
298299 exists (x + t - z).
299- by rewrite addrC subrK xtE subr_gt0.
300+ by rewrite addrC subrK subr_gt0.
300301 by rewrite addrA subrK addrC addKr.
301302move=> w [] xwE w0 <-.
302- rewrite !addrA addrC addrA addKr addrC.
303- by rewrite subr_gt0 ltr_wpDr // ltW.
303+ by rewrite addrC addrA subrK addrC subr_gt0 ltr_wpDr // ltW.
304304Qed .
305305
306306Lemma inf_shift (s1 s2 : set R) (d : R) :
0 commit comments