@@ -41,12 +41,11 @@ Variable f : R -> Y -> R.
4141Variable B : set Y.
4242Hypothesis mB : measurable B.
4343
44- Variable a u v : R.
44+ Variable u v : R.
4545Let I : set R := `]u, v[.
4646
47- Hypothesis Ia : I a.
4847Hypothesis int_f : forall x, I x -> mu.-integrable B (EFin \o (f x)).
49- Hypothesis cf : {ae mu, forall y, B y -> continuous (f ^~ y)}.
48+ Hypothesis cf : {ae mu, forall y, B y -> { in I, continuous (f ^~ y)} }.
5049
5150Variable g : Y -> R.
5251
@@ -56,13 +55,14 @@ Hypothesis g_ub : forall x, I x -> {ae mu, forall y, B y -> `|f x y| <= g y}.
5655Let F x := (\int[mu]_(y in B) f x y)%R.
5756
5857Lemma continuity_under_integral :
59- continuous_at a (fun l => \int[mu]_(x in B) f l x).
58+ { in I, continuous (fun l => \int[mu]_(x in B) f l x)} .
6059Proof .
60+ move=> a /set_mem Ia.
6161have [Z [mZ Z0 /subsetCPl ncfZ]] := cf.
62- have BZ_cf x : x \in B `\` Z -> continuous (f ^~ x).
62+ have BZ_cf x : x \in B `\` Z -> {in I, continuous (f ^~ x)} .
6363 by rewrite inE/= => -[Bx nZx]; exact: ncfZ.
6464have [vu|uv] := lerP v u.
65- by move: Ia ; rewrite /I set_itv_ge// -leNgt bnd_simp.
65+ by move: (Ia) ; rewrite /I set_itv_ge// -leNgt bnd_simp.
6666apply/cvg_nbhsP => w wa.
6767have /near_in_itvoo[e /= e0 aeuv] : a \in `]u, v[ by rewrite inE.
6868move/cvgrPdist_lt : (wa) => /(_ _ e0)[N _ aue].
@@ -114,7 +114,8 @@ apply: (@dominated_cvg _ _ _ mu _ _
114114 have : x \in B `\` Z.
115115 move: BZUUx; rewrite inE/= => -[Bx nZUUx]; rewrite inE/=; split => //.
116116 by apply: contra_not nZUUx; left.
117- by move/(BZ_cf x)/(_ a)/cvg_nbhsP; apply; rewrite (cvg_shiftn N).
117+ move/(BZ_cf x)/(_ a); move/mem_set : Ia => /[swap] /[apply].
118+ by move/cvg_nbhsP; apply; rewrite (cvg_shiftn N).
118119- by apply: (integrableS mB) => //; exact: measurableD.
119120- move=> n x [Bx ZUUx]; rewrite lee_fin.
120121 move/subsetCPl : (Ug_ub n); apply => //=.
@@ -125,7 +126,8 @@ End continuity_under_integral.
125126
126127Section differentiation_under_integral.
127128
128- Definition partial1of2 {R : realType} {T : Type} (f : R -> T -> R) : R -> T -> R := fun x y => (f ^~ y)^`() x.
129+ Definition partial1of2 {R : realType} {T : Type } (f : R -> T -> R) : R -> T -> R
130+ := fun x y => (f ^~ y)^`() x.
129131
130132Local Notation "'d1 f" := (partial1of2 f).
131133
0 commit comments