diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 156b2ca88..716b585dc 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -67,9 +67,12 @@ + lemmas `measurable_giry_prod`, `giry_int_prod1`, `giry_int_prod2` - in `measurable_realfun.v`: - + lemmas `measurable_funN` + + lemma `measurable_funN` + lemmas `nondecreasing_measurable`, `nonincreasing_measurable` +- in `lebesgue_integrable.v`: + + lemma `integrable_norm` + ### Changed - in `charge.v`: diff --git a/theories/lebesgue_integral_theory/lebesgue_integrable.v b/theories/lebesgue_integral_theory/lebesgue_integrable.v index 816623aa8..2a0b461af 100644 --- a/theories/lebesgue_integral_theory/lebesgue_integrable.v +++ b/theories/lebesgue_integral_theory/lebesgue_integrable.v @@ -339,12 +339,21 @@ Qed. End integrable_theory. Arguments eq_integrable {d T R mu D} mD f. -Section measurable_bounded_integrable. +Section Rintegrable. Context d {T : measurableType d} {R : realType}. Variable mu : {measure set T -> \bar R}. Implicit Types (D A B : set T) (f : T -> R). -Lemma measurable_bounded_integrable (f : T -> R) A (mA : measurable A) : +Lemma integrable_norm D f : mu.-integrable D (EFin \o f) -> + mu.-integrable D (EFin \o (normr \o f)). +Proof. +move=> /integrableP[mf foo]; apply/integrableP; split. + do 2 apply: measurableT_comp => //. + exact/measurable_EFinP. +by under eq_integral do rewrite /= normr_id. +Qed. + +Lemma measurable_bounded_integrable f A (mA : measurable A) : (mu A < +oo)%E -> measurable_fun A f -> [bounded f x | x in A] -> mu.-integrable A (EFin \o f). Proof. @@ -355,7 +364,7 @@ have [M [_ mrt]] := bdA; apply: le_lt_trans. by rewrite lte_mul_pinfty. Qed. -End measurable_bounded_integrable. +End Rintegrable. Lemma integrable_indic_itv {R : realType} (a b : R) (b0 b1 : bool) : let mu := lebesgue_measure in