You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: doc/SimplePoseNetEstimationWithWebcamExample.md
+1-1
Original file line number
Diff line number
Diff line change
@@ -12,7 +12,7 @@ This example shows how to predict human poses using a pretrained mode with a web
12
12
# Load Camera and Pretrained Network
13
13
14
14
15
-
Connect to the camera and load a pretrained GoogLeNet network. You can use any pretrained network at this step. The example requires MATLAB Support Package for USB Webcams, and Deep Learning Toolbox™ Model *for GoogLeNet Network*. If you do not have the required support packages installed, then the software provides a download link.
15
+
Connect to the camera and load a pretrained GoogLeNet network. You can use any pretrained network at this step. The example requires MATLAB Support Package for USB Webcams, and Deep Learning Toolbox(TM) Model *for GoogLeNet Network*. If you do not have the required support packages installed, then the software provides a download link.
Copy file name to clipboardExpand all lines: doc/SimplePoseNetTrainingExample.md
+12-4
Original file line number
Diff line number
Diff line change
@@ -31,7 +31,7 @@ As a training dataset, we use COCO\hyperref{72EF1FDB}{[2]}. COCO's annotation da
31
31
32
32
```matlab:Code
33
33
% COCO datset root directory.
34
-
cocoDir = 'D:\coco';
34
+
cocoDir = 'D:\Dataset\coco';
35
35
if ~exist(cocoDir,"dir")
36
36
error("Dataset cannot be found.")
37
37
end
@@ -334,7 +334,7 @@ initialLearnRate = 0.001;
334
334
335
335
336
336
337
-
Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.
337
+
Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox(TM) and a CUDA(R) enabled NVIDIA(R) GPU with compute capability 3.0 or higher.
338
338
339
339
340
340
@@ -824,7 +824,11 @@ end
824
824
end
825
825
```
826
826
827
-
827
+
828
+
829
+
**Heatmaps visualization:**
830
+
831
+
828
832
829
833
```matlab:Code
830
834
function Iout = visualizeHeatmaps(heatmaps, I)
@@ -843,7 +847,11 @@ Iout = im2uint8(Iout);
843
847
end
844
848
```
845
849
846
-
850
+
851
+
852
+
**Keypoints visualization:**
853
+
854
+
847
855
848
856
```matlab:Code
849
857
function Iout = visualizeKeyPoints(I,joints,skeleton,bboxes)
0 commit comments