-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
377 lines (305 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
r"""PyTorch Detection Training.
To run in a multi-gpu environment, use the distributed launcher::
python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
train.py ... --world-size $NGPU
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
--lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
--epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3
Also, if you train Keypoint R-CNN, the default hyperparameters are
--epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
"""
import datetime
import os
import sys
sys.path.append('training')
import time
import pickle
import yaml
import random
import numpy as np
import imgaug as ia
from imgaug import augmenters as iaa
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
from cdd_utils.group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from training.engine import train_one_epoch, evaluate
import training.presets
import cdd_utils.cdd_utils as cdd_utils
import mymodels
from dataset.MareSpeciesDataset import MareSpeciesDataset
from cdd_utils import read_train_pickles
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def get_dataset(dpath, name, image_set, transform, data_path, short=False, use_ia=False, set_name='conspec', aug_pct=0.5, ann_type='cvat', mix_pad_pct=0.3):
if ann_type not in ['cvat', 'count', 'mixed']:
print('invalid ann_type ', ann_type)
sys.exit()
my_mode = 'full'
split = image_set
id_lst_pth = os.path.join(dpath, 'idd_lsts', '{}_{}_{}_frames.txt'.format(split, set_name, ann_type))
fpath = os.path.join(dpath, 'frames', '{}_{}'.format(split, set_name))
if short:
print('using {} short'.format(split))
id_lst_pth = os.path.join(dpath, 'idd_lsts', '{}_{}_cvat_frames_short.txt'.format(split, set_name))
print(id_lst_pth)
# should probably make these arguments
ppath = os.path.join(dpath, 'pickle_annos')
cvpath = os.path.join(dpath, 'cvat_annos')
if use_ia:
ia.seed(0)
my_augs = [
iaa.MultiplyAndAddToBrightness(mul=(0.5,1.5), add=(-30,30)),
iaa.AdditiveGaussianNoise(scale=(0, 25)),
iaa.GaussianBlur(sigma=(0,2.0)),
iaa.Affine(scale=(0.9,1.1), translate_percent=(0, 0.05)),
iaa.GammaContrast((0.7, 1.5)),
iaa.HorizontalFlip(1)]
# seq = iaa.Sequential(my_augs, random_order=True)
aug_factory= iaa.SomeOf(3, my_augs)
else:
aug_factory = None
dset = MareSpeciesDataset(id_lst_pth, ppath, fpath, my_mode, transform, split, aug_factory, cvpath, aug_pct, mix_pad_pct)
return dset, len(dset.species)
def get_transform(train):
return training.presets.DetectionPresetTrain() if train else training.presets.DetectionPresetEval()
def main(args):
seed = 1
# torch.use_deterministic_algorithms(True) # , in beta....
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ia.seed is done in get_dataset if using imgaugs
if args['distributed']:
cdd_utils.init_distributed_mode(args)
else:
print('not using distributed mode')
print(args)
device = torch.device(args['device'])
# Data loading code
print("Loading data")
set_name = args['data']['set_name']
dataset, num_classes = get_dataset(args['data']['data_path'], args['data']['dataset'], args['data']['trainsplit'], get_transform(train=False), args['data']['data_path'], args['short'], args['data']['use_ia'], set_name, args['data']['aug_pct'], args['data']['traintype'], args['data']['mix_pad_pct'])
# valfull is the fully annotated version
dataset_test, _ = get_dataset(args['data']['data_path'], args['data']['dataset'], args['data']['valsplit'], get_transform(train=False), args['data']['data_path'], args['short'], set_name=set_name)
want_to_val_on_testsplit = False
if want_to_val_on_testsplit:
dataset_test2, _ = get_dataset(args['data']['data_path'], args['data']['dataset'], args['data']['testsplit'], get_transform(train=False), args['data']['data_path'], args['short'], set_name=set_name)
else:
dataset_test2 = None
print('not doing val on testsplit')
print("Creating data loaders")
if args['distributed']:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
if want_to_val_on_testsplit:
test_sampler2 = torch.utils.data.distributed.DistributedSampler(dataset_test2)
else:
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
if want_to_val_on_testsplit:
test_sampler2 = torch.utils.data.SequentialSampler(dataset_test2)
if args['data']['aspect_ratio_group_factor'] >= 0:
group_ids = create_aspect_ratio_groups(dataset, k=args['data']['aspect_ratio_group_factor'])
train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args['batch_size'])
else:
train_batch_sampler = torch.utils.data.BatchSampler(
train_sampler, args['batch_size'], drop_last=True)
data_loader = torch.utils.data.DataLoader(
dataset, batch_sampler=train_batch_sampler, num_workers=args['workers'],
collate_fn=cdd_utils.collate_fn,
worker_init_fn=seed_worker)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1,
sampler=test_sampler, num_workers=args['workers'],
collate_fn=cdd_utils.collate_fn,
worker_init_fn=seed_worker)
if want_to_val_on_testsplit:
data_loader_test2 = torch.utils.data.DataLoader(
dataset_test2, batch_size=1,
sampler=test_sampler2, num_workers=args['workers'],
collate_fn=cdd_utils.collate_fn,
worker_init_fn=seed_worker)
else:
data_loader_test2 = None
test_metric_strs = []
test_cebbs = []
kwargs = {}
kwargs['use_hpb'] = args['model']['context_branch']['use_hpb']
kwargs['hpb_alpha'] = args['model']['context_branch']['hpb_alpha']
kwargs['use_crb'] = args['model']['context_branch']['use_crb']
kwargs['crb_alpha'] = args['model']['context_branch']['crb_alpha']
kwargs['crb_start_ep'] = args['model']['context_branch']['crb_start_epoch']
kwargs['global_to_predictor'] = args['model']['context_branch']['global_to_predictor']
kwargs['global_feats_for_logits'] = args['model']['context_branch']['global_feats_for_logits']
kwargs['use_hpb_ctx_rep_only'] = args['model']['context_branch']['use_hpb_ctx_rep_only']
kwargs['count_cls_loss_scale'] = args['data']['count_cls_loss_scale']
kwargs['global_rep_scalar'] = args['model']['hyper_params']['global_rep_scalar']
'''
if "rcnn" in args['model']['model']:
if args['model']['rpn_score_thresh'] is not None:
kwargs["rpn_score_thresh"] = args['model']['rpn_score_thresh']
'''
print("Creating model")
# model = torchvision.models.detection.__dict__[args['model']['model']](num_classes=num_classes, pretrained=args['model']['pretrained'], **kwargs)
model = mymodels.__dict__[args['model']['model']](num_classes=num_classes,
pretrained=args['model']['pretrained'], roi_drop_pct=args['data']['roi_drop_pct'], **kwargs)
model.to(device)
model_without_ddp = model
if args['distributed']:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args['gpu']])
model_without_ddp = model.module
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params, lr=args['model']['hyper_params']['lr'], momentum=args['model']['hyper_params']['momentum'], weight_decay=args['model']['hyper_params']['weight_decay'])
# lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args['model']['hyper_params']['lr_step_size'], gamma=args['model']['hyper_params']['lr_gamma'])
# lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args['model']['hyper_params']['lr_steps'], gamma=args['model']['hyper_params']['lr_gamma'])
print('using ExponentialLR')
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=args['model']['hyper_params']['lr_gamma'])
if args['model']['resume']:
checkpoint = torch.load(args['model']['resume'], map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args['model']['start_epoch'] = checkpoint['epoch'] + 1
model_num = int(checkpoint['epoch'])
with open(os.path.join(args['output_dir'], 'pickles/{}.p'.format(model_num))) as f:
pickd = pickle.load(f)
train_loss_strs, train_metric_strs, train_cebbs, val_metric_strs, val_cebbs, lrs = pickd
else:
train_loss_strs = []
val_metric_strs = []
val_cebbs = []
train_metric_strs = []
train_cebbs = []
lrs = []
if args['model']['start_weights'] != '':
sd_pth = args['model']['start_weights']
print("loading args['model']['start_weights'] {}".format(sd_pth))
model.load_state_dict(torch.load(sd_pth)['model'])
if args["model"]["test_only_weights"] != '':
sd_pth = args["model"]["test_only_weights"]
print('loading args["model"]["test_only_weights"] {}'.format(sd_pth))
model.load_state_dict(torch.load(sd_pth)['model'])
print('Running test_only on {}'.format(data_loader_test.dataset.set_split))
out_dir = None
if args['save_detections']:
out_dir = args['output_dir']
evaluate(model, data_loader_test, device=device, use_crb=args['model']['context_branch']['use_crb'], vis_dir=out_dir)
return
print("Start training")
best_val_AP = -1.0
last_val_model_path = ''
best_train_AP = -1.0
train_AP = -1.0
last_train_model_path = ''
save_now = False
start_time = time.time()
for epoch in range(args['model']['start_epoch'], args['epochs']):
if args['distributed']:
train_sampler.set_epoch(epoch)
if model.ctx_branch:
use_crb = epoch >= model.ctx_branch.start_epoch
else:
use_crb = False
train_metric_logger = train_one_epoch(model, optimizer, data_loader, device, epoch, args['print_freq'])
train_loss_strs.append(train_metric_logger.log_msgs)
lrs.append(lr_scheduler.get_last_lr())
lr_scheduler.step()
# evaluate after every epoch
train_eval_freq = 1
want_to_val_on_train = True
if not (epoch % train_eval_freq) and want_to_val_on_train:
print('EVALUATING TRAINSPLIT')
train_coco_evaluator = evaluate(model, data_loader, device=device, use_crb=use_crb)
train_metric_strs.append(train_coco_evaluator.metric_str)
train_cebbs.append(train_coco_evaluator.coco_eval['bbox'])
train_AP = train_coco_evaluator.coco_eval['bbox'].stats[1]
else:
print('NOT EVALUATING TRAINSPLIT')
print('EVALUATING VALSPLIT')
val_coco_evaluator = evaluate(model, data_loader_test, device=device, use_crb=use_crb)
val_metric_strs.append(val_coco_evaluator.metric_str)
val_cebbs.append(val_coco_evaluator.coco_eval['bbox'])
if want_to_val_on_testsplit:
print('EVALUATING TESTSPLIT')
test_coco_evaluator = evaluate(model, data_loader_test2, device=device, use_crb=use_crb)
test_metric_strs.append(test_coco_evaluator.metric_str)
test_cebbs.append(test_coco_evaluator.coco_eval['bbox'])
test_AP = test_coco_evaluator.coco_eval['bbox'].stats[1]
else:
test_AP = -1.0
val_AP = val_coco_evaluator.coco_eval['bbox'].stats[1]
print('train: {}, val: {}, test: {} AP'.format(train_AP, val_AP, test_AP))
if val_AP > best_val_AP:
save_now = True
best_val_AP = val_AP
print('best val AP so far achieved {}'.format(best_val_AP))
if train_AP > best_train_AP:
# save_now = True # do you care about best train weights? not anymore, save space
best_train_AP = train_AP
print('best train AP so far achieved {}'.format(best_train_AP))
if args['output_dir'] and save_now:
cdd_utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': args,
'epoch': epoch},
os.path.join(args['output_dir'], 'model_{}.pth'.format(epoch)))
# only want to keep the most recent best weights
# and remove the old ones to save storage
if val_AP > best_val_AP:
if os.path.isfile(last_val_model_path):
os.remove(last_val_model_path)
last_val_model_path = os.path.join(args['output_dir'], 'model_{}.pth'.format(epoch))
if train_AP > best_train_AP:
if os.path.isfile(last_train_model_path):
os.remove(last_train_model_path)
last_train_model_path = os.path.join(args['output_dir'], 'model_{}.pth'.format(epoch))
save_now = False
if args['output_dir']:
pickle_dir = os.path.join(args['output_dir'], 'pickles')
if data_loader_test2 is None:
to_pickle = (train_loss_strs, train_metric_strs, train_cebbs,
val_metric_strs, val_cebbs, lrs)
else:
to_pickle = (train_loss_strs, train_metric_strs, train_cebbs,
val_metric_strs, val_cebbs, test_metric_strs,
test_cebbs, lrs)
with open(os.path.join(pickle_dir, '{}.p'.format(epoch)), 'wb') as f:
pickle.dump(to_pickle, f)
if epoch > 1:
to_del_ep = epoch - 2
if to_del_ep%10 != 0:
todp = os.path.join(pickle_dir, '{}.p'.format(to_del_ep))
if os.path.isfile(todp):
os.remove(todp)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
print('now calling read_train_pickles to summarize')
read_train_pickles.main(args['output_dir'], epoch, False)
end_txt_pth = os.path.join(args['output_dir'], 'finished.txt')
text = 'done'
with open(end_txt_pth, 'w') as f:
f.write(text)
if __name__ == "__main__":
with open('config.yaml') as f:
args = yaml.load(f, Loader=yaml.Loader)
if args['output_dir']:
cdd_utils.mkdir(args['output_dir'])
cdd_utils.mkdir(os.path.join(args['output_dir'], 'pickles'))
main(args)