-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathy_neural_network_back_to_basics.py
300 lines (250 loc) · 9.17 KB
/
y_neural_network_back_to_basics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import torch.nn.functional as F
class NeuralNetwork(torch.nn.Module):
def __init__(self, num_inputs, num_outputs):
super().__init__()
self.layers = torch.nn.Sequential(
# 1st hidden layer
torch.nn.Linear(num_inputs, 30),
torch.nn.ReLU(),
# 2nd hidden layer
torch.nn.Linear(30, 20),
torch.nn.ReLU(),
# output layer
torch.nn.Linear(20, num_outputs)
)
def forward(self, x):
logits = self.layers(x)
return logits
class ToyDataset(Dataset):
def __init__(self, X, y):
self.features = X
self.labels = y
def __getitem__(self, index):
one_x = self.features[index]
one_y = self.labels[index]
return one_x, one_y
def __len__(self):
return self.labels.shape[0]
def compute_accuracy(model, dataloader):
model.eval()
correct = 0.0
total_examples = 0
for idx, (features, labels) in enumerate(dataloader):
with torch.no_grad():
logits = model(features)
predictions = torch.argmax(logits, dim=1)
compare = labels == predictions
correct += torch.sum(compare)
total_examples += len(compare)
return (correct / total_examples).item()
if __name__ == "__main__":
tensor0d = torch.tensor(1)
tensor1d = torch.tensor([1, 2, 3])
tensor2d = torch.tensor([[1, 2], [3, 4]])
tensor3d = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
tensor1d = torch.tensor([1, 2, 3])
print(tensor1d.dtype)
print("\n##############################################\n")
floatvec = torch.tensor([1.0, 2.0, 3.0])
print(floatvec.dtype)
print("\n##############################################\n")
floatvec = tensor1d.to(torch.float32)
print(floatvec.dtype)
print("\n##############################################\n")
tensor2d = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(tensor2d)
print("\n##############################################\n")
print(tensor2d.shape)
print("\n##############################################\n")
print(tensor2d.reshape(3, 2))
print("\n##############################################\n")
print(tensor2d.view(3, 2))
print("\n##############################################\n")
print(tensor2d.T)
print("\n##############################################\n")
print(tensor2d.matmul(tensor2d.T))
print("\n##############################################\n")
print(tensor2d @ tensor2d.T)
print("\n##############################################\n")
#A logistic regression forward pass
import torch.nn.functional as F
y = torch.tensor([1.0])
x1 = torch.tensor([1.1])
w1 = torch.tensor([2.2])
b = torch.tensor([0.0])
z = x1 * w1 + b
a = torch.sigmoid(z)
loss = F.binary_cross_entropy(a, y)
print(loss)
print("\n##############################################\n")
#Computing gradients via autograd
import torch.nn.functional as F
from torch.autograd import grad
y = torch.tensor([1.0])
x1 = torch.tensor([1.1])
w1 = torch.tensor([2.2], requires_grad=True)
b = torch.tensor([0.0], requires_grad=True)
z = x1 * w1 + b
a = torch.sigmoid(z)
loss = F.binary_cross_entropy(a, y)
grad_L_w1 = grad(loss, w1, retain_graph=True)
grad_L_b = grad(loss, b, retain_graph=True)
print(grad_L_w1)
print(grad_L_b)
print("\n##############################################\n")
loss.backward()
print(w1.grad)
print(b.grad)
print("\n##############################################\n")
model = NeuralNetwork(50, 3)
print(model)
print("\n##############################################\n")
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total number of trainable model parameters:", num_params)
print("\n##############################################\n")
print(model.layers[0].weight.shape)
print(model.layers[0].weight)
print("\n##############################################\n")
torch.manual_seed(123)
model = NeuralNetwork(50, 3)
print(model.layers[0].weight)
print("\n##############################################\n")
torch.manual_seed(123)
X = torch.rand((1, 50))
out = model(X)
print(out)
print("\n##############################################\n")
with torch.no_grad():
out = model(X)
print(out)
print("\n##############################################\n")
with torch.no_grad():
out = torch.softmax(model(X), dim=1)
print(out)
print("\n##############################################\n")
#Creating a small toy dataset
X_train = torch.tensor([
[-1.2, 3.1],
[-0.9, 2.9],
[-0.5, 2.6],
[2.3, -1.1],
[2.7, -1.5]
])
y_train = torch.tensor([0, 0, 0, 1, 1])
X_test = torch.tensor([
[-0.8, 2.8],
[2.6, -1.6],
])
y_test = torch.tensor([0, 1])
#Defining a custom Dataset class
train_ds = ToyDataset(X_train, y_train)
test_ds = ToyDataset(X_test, y_test)
print(len(train_ds))
print("\n##############################################\n")
torch.manual_seed(123)
train_loader = DataLoader(
dataset=train_ds,
batch_size=2,
shuffle=True,
num_workers=0
)
test_loader = DataLoader(
dataset=test_ds,
batch_size=2,
shuffle=False,
num_workers=0
)
for idx, (x, y) in enumerate(train_loader):
print(f"Batch {idx+1}:", x, y)
print("\n##############################################\n")
#A training loader that drops the last batch
train_loader = DataLoader(
dataset=train_ds,
batch_size=2,
shuffle=True,
num_workers=0,
drop_last=True
)
for idx, (x, y) in enumerate(train_loader):
print(f"Batch {idx+1}:", x, y)
print("\n##############################################\n")
#Neural network training in PyTorch
torch.manual_seed(123)
model = NeuralNetwork(num_inputs=2, num_outputs=2)
optimizer = torch.optim.SGD(
model.parameters(), lr=0.5
)
num_epochs = 3
for epoch in range(num_epochs):
model.train()
for batch_idx, (features, labels) in enumerate(train_loader):
logits = model(features)
loss = F.cross_entropy(logits, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
### LOGGING
print(f"Epoch: {epoch+1:03d}/{num_epochs:03d}"
f" | Batch {batch_idx:03d}/{len(train_loader):03d}"
f" | Train Loss: {loss:.2f}")
model.eval()
print("\n##############################################\n")
# Insert optional model evaluation code
model.eval()
with torch.no_grad():
outputs = model(X_train)
print(outputs)
print("\n##############################################\n")
torch.set_printoptions(sci_mode=False)
probas = torch.softmax(outputs, dim=1)
print(probas)
print("\n##############################################\n")
predictions = torch.argmax(probas, dim=1)
print(predictions)
print("\n##############################################\n")
predictions = torch.argmax(outputs, dim=1)
print(predictions)
print("\n##############################################\n")
predictions == y_train
sum = torch.sum(predictions == y_train)
print(sum)
print("\n##############################################\n")
print(compute_accuracy(model, train_loader))
print(compute_accuracy(model, test_loader))
print("\n##############################################\n")
torch.save(model.state_dict(), "model.pth")
model = NeuralNetwork(2, 2)
model.load_state_dict(torch.load("model.pth"))
print(torch.cuda.is_available())
print("\n##############################################\n")
tensor_1 = torch.tensor([1., 2., 3.])
tensor_2 = torch.tensor([4., 5., 6.])
print(tensor_1 + tensor_2)
print("\n##############################################\n")
tensor_1 = tensor_1.to("cpu")
print(tensor_1 + tensor_2)
print("\n##############################################\n")
#A training loop on a GPU
torch.manual_seed(123)
model = NeuralNetwork(num_inputs=2, num_outputs=2)
device = torch.device("cuda")
model = model.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
num_epochs = 3
for epoch in range(num_epochs):
model.train()
for batch_idx, (features, labels) in enumerate(train_loader):
features, labels = features.to(device), labels.to(device)
logits = model(features)
loss = F.cross_entropy(logits, labels) # Loss function
optimizer.zero_grad()
loss.backward()
optimizer.step()
### LOGGING
print(f"Epoch: {epoch+1:03d}/{num_epochs:03d}"
f" | Batch {batch_idx:03d}/{len(train_loader):03d}"
f" | Train/Val Loss: {loss:.2f}")
model.eval()