-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
101 lines (95 loc) · 5.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Yaoyao Liu
## Tianjin University
## Copyright (c) 2019
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
""" Main function for this repo. """
import argparse
import torch
from utils.misc import pprint
from utils.gpu_tools import set_gpu
from trainer.meta import MetaTrainer
from trainer.pre import PreTrainer
from models.IFSL import PretrainNet
# python main.py --config=mini_5_resnet_baseline --gpu=
# python main.py --config=mini_5_resnet_baseline --phase=meta_eval --save_hacc=True --gpu=
# python main.py --config=mini_5_resnet_baseline --phase=meta_eval --cross=True --gpu=
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Basic parameters
parser.add_argument('--model_type', type=str, default='ResNet', choices=['ResNet']) # The network architecture
parser.add_argument('--dataset', type=str, default='miniImageNet', choices=['miniImageNet', 'tieredImageNet', 'FC100']) # Dataset
parser.add_argument('--phase', type=str, default='meta_train', choices=['pre_train', 'meta_train', 'meta_eval', 'meta_cam', 'pretrain_clfs']) # Phase
parser.add_argument('--seed', type=int, default=0) # Manual seed for PyTorch, "0" means using random seed
parser.add_argument('--gpu', default='1') # GPU id
parser.add_argument('--mini_dataset_dir', type=str, default='/data2/yuezhongqi/Model/sib/pretrain/data/Mini-ImageNet') # Dataset folder
parser.add_argument('--tiered_dataset_dir', type=str, default='/data2/yuezhongqi/Dataset/tiered') # Dataset folder
parser.add_argument('--cross_dataset_dir', type=str, default='/data2/yuezhongqi/Dataset/CUB_200_2011/images') # Dataset folder
# Parameters for meta-train phase
parser.add_argument('--max_epoch', type=int, default=100) # Epoch number for meta-train phase
parser.add_argument('--num_batch', type=int, default=100) # The number for different tasks used for meta-train
parser.add_argument('--shot', type=int, default=1) # Shot number, how many samples for one class in a task
parser.add_argument('--way', type=int, default=5) # Way number, how many classes in a task
parser.add_argument('--train_query', type=int, default=15) # The number of training samples for each class in a task
parser.add_argument('--val_query', type=int, default=15) # The number of test samples for each class in a task
parser.add_argument('--meta_lr1', type=float, default=0.0001) # Learning rate for SS weights
parser.add_argument('--meta_lr2', type=float, default=0.001) # Learning rate for FC weights
parser.add_argument('--base_lr', type=float, default=0.01) # Learning rate for the inner loop
parser.add_argument('--update_step', type=int, default=100) # The number of updates for the inner loop
parser.add_argument('--step_size', type=int, default=10) # The number of epochs to reduce the meta learning rates
parser.add_argument('--gamma', type=float, default=0.5) # Gamma for the meta-train learning rate decay
parser.add_argument('--init_weights', type=str, default=None) # The pre-trained weights for meta-train phase
parser.add_argument('--eval_weights', type=str, default=None) # The meta-trained weights for meta-eval phase
parser.add_argument('--meta_label', type=str, default='exp1') # Additional label for meta-train
# Parameters for pretain phase
parser.add_argument('--pre_max_epoch', type=int, default=100) # Epoch number for pre-train phase
parser.add_argument('--pre_batch_size', type=int, default=128) # Batch size for pre-train phase
parser.add_argument('--pre_lr', type=float, default=0.1) # Learning rate for pre-train phase
parser.add_argument('--pre_gamma', type=float, default=0.2) # Gamma for the pre-train learning rate decay
parser.add_argument('--pre_step_size', type=int, default=30) # The number of epochs to reduce the pre-train learning rate
parser.add_argument('--pre_custom_momentum', type=float, default=0.9) # Momentum for the optimizer during pre-train
parser.add_argument('--pre_custom_weight_decay', type=float, default=0.0005) # Weight decay for the optimizer during pre-train
parser.add_argument('--debug', type=bool, default=False) # Weight decay for the optimizer during pre-train
parser.add_argument('--nclfs', type=int, default=10)
parser.add_argument('--deconfound', type=bool, default=False)
parser.add_argument('--config', type=str, default="mini_5_resnet_baseline")
parser.add_argument('--cross', type=bool, default=False)
parser.add_argument("--save_hacc", type=bool, default=False)
# Set and print the parameters
args = parser.parse_args()
# pprint(vars(args))
# Set the GPU id
set_gpu(args.gpu)
# Set manual seed for PyTorch
if args.seed==0:
print ('Using random seed.')
torch.backends.cudnn.benchmark = True
else:
print ('Using manual seed:', args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Start trainer for pre-train, meta-train or meta-eval
if args.phase=='meta_train':
trainer = MetaTrainer(args)
trainer.train()
elif args.phase=='meta_eval':
trainer = MetaTrainer(args)
trainer.eval()
elif args.phase == "meta_cam":
trainer = MetaTrainer(args)
trainer.eval_cam()
elif args.phase=='pre_train':
trainer = PreTrainer(args)
trainer.train()
elif args.phase == "pretrain_clfs":
pretrain = PretrainNet(args)
pretrain.train_classifier(args.nclfs)
# means = pretrain.get_base_means(num_classes=64, is_cosine_feature=True)
else:
raise ValueError('Please set correct phase.')