@@ -92,36 +92,28 @@ void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
9292}
9393
9494void llm_graph_input_out_ids::set_input (const llama_ubatch * ubatch) {
95- if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
96- // GGML_ASSERT(out_ids && "every model that can must skip unused outputs");
95+ GGML_ASSERT (out_ids);
9796
98- if (!out_ids) {
99- LLAMA_LOG_WARN (" %s: 'out_ids' is not created\n " , __func__);
100- } else {
101- const int64_t n_tokens = ubatch->n_tokens ;
97+ const int64_t n_tokens = ubatch->n_tokens ;
10298
103- GGML_ASSERT (ggml_backend_buffer_is_host (out_ids->buffer ));
104- int32_t * data = (int32_t *) out_ids->data ;
99+ GGML_ASSERT (ggml_backend_buffer_is_host (out_ids->buffer ));
100+ int32_t * data = (int32_t *) out_ids->data ;
105101
106- if (n_outputs == n_tokens) {
107- for (int i = 0 ; i < n_tokens; ++i) {
108- data[i] = i;
109- }
110- } else if (ubatch->output ) {
111- int32_t n_outputs = 0 ;
112- for (int i = 0 ; i < n_tokens; ++i) {
113- if (ubatch->output [i]) {
114- data[n_outputs++] = i;
115- }
116- }
117- // the graph needs to have been passed the correct number of outputs
118- GGML_ASSERT (n_outputs == n_outputs);
119- } else if (n_outputs == 1 ) {
120- // only keep last output
121- data[0 ] = n_tokens - 1 ;
122- } else {
123- GGML_ASSERT (n_outputs == 0 );
124- }
102+ if (n_outputs == n_tokens) {
103+ for (int i = 0 ; i < n_tokens; ++i) {
104+ data[i] = i;
105+ }
106+
107+ return ;
108+ }
109+
110+ GGML_ASSERT (ubatch->output );
111+
112+ int n_outputs = 0 ;
113+
114+ for (int i = 0 ; i < n_tokens; ++i) {
115+ if (ubatch->output [i]) {
116+ data[n_outputs++] = i;
125117 }
126118 }
127119}
@@ -874,6 +866,14 @@ ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
874866}
875867
876868ggml_tensor * llm_graph_context::build_inp_out_ids () const {
869+ // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
870+ // but this would make the graph topology depend on the number of output tokens, which can interere with
871+ // features that require constant topology such as pipline parallelism
872+ // ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
873+ // if (n_outputs < n_tokens) {
874+ // return nullptr;
875+ // }
876+
877877 auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
878878
879879 auto & cur = inp->out_ids ;
0 commit comments