-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmkdocs.yml
69 lines (68 loc) · 3.37 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
site_name: No Bullshit Guide to Statistics
docs_dir: "docs"
site_dir: "_build/html/site"
site_url: "https://nobsstats.com/site/"
site_author: Ivan Savov
plugins:
- mkdocs-jupyter:
include_source: True
extra_javascript:
- javascripts/mathjax_config.js
- https://unpkg.com/mathjax@3/es5/tex-mml-chtml.js
markdown_extensions:
- pymdownx.arithmatex:
generic: false
theme:
name: material
exclude_docs: |
notebooks/explorations
nav:
- Home: index.md
- Chapter 1:
- Data: notebooks/10_DATA.md
- Introduction to data: notebooks/11_intro_to_data.ipynb
- Data in practice: notebooks/12_data_in_practice.ipynb
- Descriptive dtatistics: notebooks/13_descriptive_statistics.ipynb
- Chapter 2:
- Probability theory: notebooks/20_PROB.md
- Discrete random variables: notebooks/21_discrete_random_vars.ipynb
- Multiple random variables: notebooks/22_multiple_random_vars.ipynb
- Inventory of discrete distributions: notebooks/23_inventory_discrete_dists.ipynb
- Calculus prerequisites: notebooks/24_calculus_prerequisites.ipynb
- Continuous random variables: notebooks/25_continuous_random_vars.ipynb
- Inventory of continuous distributions: notebooks/26_inventory_continuous_dists.ipynb
- Random variable generation: notebooks/27_random_var_generation.ipynb
- Probability models for random samples: notebooks/28_random_samples.ipynb
- Chapter 3:
- Inferential statistics: notebooks/30_STATS.md
- Estimates and estimators: notebooks/31_estimators.ipynb
- Confidence intervals: notebooks/32_confidence_intervals.ipynb
- Introduction to hypothesis testing: notebooks/33_intro_to_NHST.ipynb
- Analytical approximations: notebooks/34_analytical_approx.ipynb
- Two-sample tests: notebooks/35_two_sample_tests.ipynb
- Statistical design and error analysis: notebooks/36_design.ipynb
- Inventory of statistical tests: notebooks/37_inventory_stats_tests.ipynb
- Chapter 4:
- Linear models: notebooks/40_LINEAR_MODELS.md
- Simple linear regression: notebook/41_simple_linear_regression.ipynb
- Multiple linear regression: notebook/42_multiple_linear_regression.ipynb
- Interpreting linear models: notebook/43_interpreting_linear_models.ipynb
- Regression with categorical predictors: notebooks/44_regression_with_categorical_predictors.ipynb
- Causal inference using linear models: notebooks/45_causal_inference.ipynb
- Generalized linear models: notebooks/46_generalized_linear_models.ipynb
- Chapter 5:
- Bayesian statistics: notebooks/50_BAYESIAN_STATS.md
- Introduction to Bayesian statistics: notebooks/51_intro_to_Bayesian_stats.ipynb
- Bayesian inference computations: notebooks/52_Bayesian_inference_computations.ipynb
- Bayesian linear models: notebooks/53_Bayesian_linear_models.ipynb
- Bayesian difference between means: notebooks/54_difference_between_means.ipynb
- Hierarchical models: notebooks/55_hierarchical_models.ipynb
- Appendix:
- Appendices: tutorials/appendix.md
- Python tutorial: tutorials/python_tutorial.ipynb
- Pandas tutorial: tutorials/pandas_tutorial.ipynb
- Seaborn tutorial: tutorials/seaborn_tutorial.ipynb
- Notebooks for blog posts:
- Index: blogposts/index.md
- Python basics: blogposts/python_for_stats.ipynb
- Bootstrap: blogposts/bootstrap.ipynb