@@ -184,7 +184,8 @@ aus_production %>%
184
184
In the above examples, ` sum ` function transforms a numeric vector.
185
185
186
186
tsibble package provides ` difference ` function, which also transforms a
187
- time-wise numeric vector. Using it, I can create a new variable “diff”.
187
+ time-wise numeric vector. Using it, you can create a new variable
188
+ “diff”.
188
189
189
190
``` r
190
191
aus_arrivals %> %
@@ -208,7 +209,7 @@ aus_arrivals %>%
208
209
# > # … with 498 more rows
209
210
```
210
211
211
- Or I can transform a existing variable “Arrivals”. I can use
212
+ Or you can transform a existing variable “Arrivals”. You can use
212
213
` difference ` function flexibly.
213
214
214
215
``` r
@@ -300,11 +301,11 @@ arrange(wrong, year)
300
301
# > # A tsibble: 6 x 3 [1Y]
301
302
# > year value diff
302
303
# > <int> <dbl> <dbl>
303
- # > 1 2000 0 NA
304
- # > 2 2001 1 -24
305
- # > 3 2002 4 4
306
- # > 4 2003 9 5
307
- # > 5 2004 16 15
304
+ # > 1 2000 0 -4
305
+ # > 2 2001 1 1
306
+ # > 3 2002 4 -12
307
+ # > 4 2003 9 8
308
+ # > 5 2004 16 NA
308
309
# > 6 2005 25 16
309
310
310
311
right <- mutate(scrambled , diff = difference(value , order_by = year ))
@@ -364,23 +365,28 @@ refer to its document.
364
365
365
366
``` r
366
367
aus_livestock %> %
368
+ mutate(Count = if_else(row_number() == 4 , NA_real_ , Count )) %> %
367
369
group_by_key() %> %
368
- mutate(ma3 = moving_average(Count , n = 3 )) %> %
370
+ mutate(
371
+ ma3 = moving_average(Count , n = 3 ),
372
+ ma3_na.rm = moving_average(Count , n = 3 , na.rm = TRUE ),
373
+ ma3_left = moving_average(Count , n = 3 , .align = " left" )
374
+ ) %> %
369
375
ungroup()
370
- # > # A tsibble: 29,364 x 5 [1M]
376
+ # > # A tsibble: 29,364 x 7 [1M]
371
377
# > # Key: Animal, State [54]
372
- # > Month Animal State Count ma3
373
- # > <mth> <fct> <fct> <dbl> <dbl>
374
- # > 1 1976 Jul Bulls, bullocks and steers Australian Capital Territory 2300 NA
375
- # > 2 1976 Aug Bulls, bullocks and steers Australian Capital Territory 2100 NA
376
- # > 3 1976 Sep Bulls, bullocks and steers Australian Capital Territory 2100 2167.
377
- # > 4 1976 Oct Bulls, bullocks and steers Australian Capital Territory 1900 2033.
378
- # > 5 1976 Nov Bulls, bullocks and steers Australian Capital Territory 2100 2033.
379
- # > 6 1976 Dec Bulls, bullocks and steers Australian Capital Territory 1800 1933 .
380
- # > 7 1977 Jan Bulls, bullocks and steers Australian Capital Territory 1800 1900
381
- # > 8 1977 Feb Bulls, bullocks and steers Australian Capital Territory 1900 1833.
382
- # > 9 1977 Mar Bulls, bullocks and steers Australian Capital Territory 2700 2133.
383
- # > 10 1977 Apr Bulls, bullocks and steers Australian Capital Territory 2300 2300
378
+ # > Month Animal State Count ma3 ma3_na.rm ma3_left
379
+ # > <mth> <fct> <fct> <dbl> <dbl> <dbl> <dbl>
380
+ # > 1 1976 Jul Bulls, bullocks and steers Australia… 2300 NA NA 2167.
381
+ # > 2 1976 Aug Bulls, bullocks and steers Australia… 2100 NA NA NA
382
+ # > 3 1976 Sep Bulls, bullocks and steers Australia… 2100 2167. 2167. NA
383
+ # > 4 1976 Oct Bulls, bullocks and steers Australia… NA NA 2100 NA
384
+ # > 5 1976 Nov Bulls, bullocks and steers Australia… 2100 NA 2100 1900
385
+ # > 6 1976 Dec Bulls, bullocks and steers Australia… 1800 NA 1950 1833 .
386
+ # > 7 1977 Jan Bulls, bullocks and steers Australia… 1800 1900 1900 2133.
387
+ # > 8 1977 Feb Bulls, bullocks and steers Australia… 1900 1833. 1833. 2300
388
+ # > 9 1977 Mar Bulls, bullocks and steers Australia… 2700 2133. 2133. 2500
389
+ # > 10 1977 Apr Bulls, bullocks and steers Australia… 2300 2300 2300 2567.
384
390
# > # … with 29,354 more rows
385
391
```
386
392
@@ -514,4 +520,40 @@ aus_arrivals %>%
514
520
# > # … with 498 more rows
515
521
```
516
522
523
+ ` tq_sa ` function returns right even if the rows are reshuffled, as
524
+ ` tq_diff ` , ` tq_ma ` and ` tq_gr ` functions do.
525
+
526
+ ``` r
527
+ aus_arrivals %> %
528
+ slice(sample(nrow(aus_arrivals ))) %> %
529
+ tq_sa() %> %
530
+ arrange(Origin , Quarter )
531
+ # > Warning: Current temporal ordering may yield unexpected results.
532
+ # > ℹ Suggest to sort by `Origin`, `Quarter` first.
533
+
534
+ # > Warning: Current temporal ordering may yield unexpected results.
535
+ # > ℹ Suggest to sort by `Origin`, `Quarter` first.
536
+
537
+ # > Warning: Current temporal ordering may yield unexpected results.
538
+ # > ℹ Suggest to sort by `Origin`, `Quarter` first.
539
+
540
+ # > Warning: Current temporal ordering may yield unexpected results.
541
+ # > ℹ Suggest to sort by `Origin`, `Quarter` first.
542
+ # > # A tsibble: 508 x 3 [1Q]
543
+ # > # Key: Origin [4]
544
+ # > Quarter Origin Arrivals
545
+ # > <qtr> <chr> <dbl>
546
+ # > 1 1981 Q1 Japan 12179.
547
+ # > 2 1981 Q2 Japan 12742.
548
+ # > 3 1981 Q3 Japan 13107.
549
+ # > 4 1981 Q4 Japan 14065.
550
+ # > 5 1982 Q1 Japan 14004.
551
+ # > 6 1982 Q2 Japan 14564.
552
+ # > 7 1982 Q3 Japan 14909.
553
+ # > 8 1982 Q4 Japan 15542.
554
+ # > 9 1983 Q1 Japan 16868.
555
+ # > 10 1983 Q2 Japan 16584.
556
+ # > # … with 498 more rows
557
+ ```
558
+
517
559
EOL
0 commit comments