-
Notifications
You must be signed in to change notification settings - Fork 2
/
vec.h
389 lines (330 loc) · 8.63 KB
/
vec.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
James William Fletcher (github.com/mrbid)
September 2021 - February 2023
Portable floating-point Vec4 lib.
*/
#ifndef VEC_H
#define VEC_H
#include <math.h>
#include <string.h>
#define PI 3.141592741f // PI
#define x2PI 6.283185482f // PI * 2
#define d2PI 1.570796371f // PI / 2
#define DEGREE 57.29578018f // 1 Radian as Degrees
#define RADIAN 0.01745329238f // PI / 180 (1 Degree as Radians)
#define RAD2DEG DEGREE
#define DEG2RAD RADIAN
typedef struct{
float x,y,z,w;
} vec;
static inline float randf(); // uniform [0 to 1]
static inline float randfc(); // uniform [-1 to 1]
float randfn(); // box-muller normal [bi-directional]
static inline float fRandFloat(const float min, const float max);
static inline int fRand(const float min, const float max);
int vec_ftoi(float f); // float to integer quantise
// normalising the result is optional / at the callers responsibility
void vRuv(vec* v); // Random Unit Vector
void vRuvN(vec* v); // Normal Random Unit Vector
void vRuvBT(vec* v); // Brian Tung Random Unit Vector (on surface of unit sphere)
void vRuvTA(vec* v); // T.Davison Trial & Error (inside unit sphere)
void vRuvTD(vec* v); // T.Davison Random Unit Vector Sphere
void vCross(vec* r, const vec v1, const vec v2);
float vDot(const vec v1, const vec v2);
float vSum(const vec v);
float vSumAbs(const vec v);
void vReflect(vec* r, const vec v, const vec n);
int vEqualTol(const vec a, const vec b, const float tol);
int vEqualInt(const vec a, const vec b);
void vMin(vec* r, const vec v1, const vec v2);
void vMax(vec* r, const vec v1, const vec v2);
void vNorm(vec* v);
float vDist(const vec v1, const vec v2);
float vDistSq(const vec a, const vec b);
float vDistMh(const vec a, const vec b); // manhattan
float vDistLa(const vec a, const vec b); // longest axis
float vMod(const vec v); // modulus
float vMag(const vec v); // magnitude
void vInv(vec* v); // invert
void vCopy(vec* r, const vec v);
void vDir(vec* r, const vec v1, const vec v2); // direction vector from v1 to v2
void vRotX(vec* v, const float radians);
void vRotY(vec* v, const float radians);
void vRotZ(vec* v, const float radians);
void vAdd(vec* r, const vec v1, const vec v2);
void vSub(vec* r, const vec v1, const vec v2);
void vDiv(vec* r, const vec numerator, const vec denominator);
void vMul(vec* r, const vec v1, const vec v2);
void vAddS(vec* r, const vec v1, const float v2);
void vSubS(vec* r, const vec v1, const float v2);
void vDivS(vec* r, const vec v1, const float v2);
void vMulS(vec* r, const vec v1, const float v2);
//
int srandfq = 74235;
static inline void srandf(const int seed){srandfq = seed;}
static inline float randf()
{
// https://www.musicdsp.org/en/latest/Other/273-fast-float-random-numbers.html ([email protected])
srandfq *= 16807;
return (float)(srandfq & 0x7FFFFFFF) * 4.6566129e-010f;
}
static inline float randfc()
{
// https://www.musicdsp.org/en/latest/Other/273-fast-float-random-numbers.html ([email protected])
srandfq *= 16807;
return ((float)(srandfq)) * 4.6566129e-010f;
}
static inline float fRandFloat(const float min, const float max)
{
return min + randf() * (max-min);
}
static inline int fRand(const float min, const float max)
{
return (int)((min + randf() * (max-min))+0.5f);
}
float randfn()
{
float u = randfc();
float v = randfc();
float r = u * u + v * v;
while(r == 0.f || r > 1.f)
{
u = randfc();
v = randfc();
r = u * u + v * v;
}
return u * sqrtf(-2.f * logf(r) / r);
}
void vRuv(vec* v)
{
v->x = randfc();
v->y = randfc();
v->z = randfc();
}
void vRuvN(vec* v)
{
v->x = randfn();
v->y = randfn();
v->z = randfn();
}
void vRuvBT(vec* v)
{
// https://math.stackexchange.com/a/1586185
// or should I have called this vRuvLR()
// https://mathworld.wolfram.com/SpherePointPicking.html
const float y = acosf(randfc()) - d2PI;
const float p = x2PI * randf();
v->x = cosf(y) * cosf(p);
v->y = cosf(y) * sinf(p);
v->z = sinf(y);
}
void vRuvTA(vec* v)
{
while(1)
{
v->x = randfc();
v->y = randfc();
v->z = randfc();
const float len = vMag(*v);
if(len <= 1.0f){return;}
}
}
void vRuvTD(vec* v)
{
v->x = sinf((randf() * x2PI) - PI);
v->y = cosf((randf() * x2PI) - PI);
v->z = randfc();
}
void vCross(vec* r, const vec v1, const vec v2)
{
r->x = (v1.y * v2.z) - (v2.y * v1.z);
r->y = -((v1.x * v2.z) - (v2.x * v1.z));
r->z = (v1.x * v2.y) - (v2.x * v1.y);
}
float vDot(const vec v1, const vec v2)
{
return (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z);
}
float vSum(const vec v)
{
return v.x + v.y + v.z;
}
float vSumAbs(const vec v)
{
return fabs(v.x) + fabs(v.y) + fabs(v.z);
}
void vInv(vec* v)
{
v->x = -v->x;
v->y = -v->y;
v->z = -v->z;
}
void vNorm(vec* v)
{
const float len = 1.f/sqrtf(v->x*v->x + v->y*v->y + v->z*v->z);
v->x *= len;
v->y *= len;
v->z *= len;
}
float vDist(const vec v1, const vec v2)
{
const float xm = (v1.x - v2.x);
const float ym = (v1.y - v2.y);
const float zm = (v1.z - v2.z);
return sqrtf(xm*xm + ym*ym + zm*zm);
}
float vDistSq(const vec a, const vec b)
{
const float xm = (a.x - b.x);
const float ym = (a.y - b.y);
const float zm = (a.z - b.z);
return xm*xm + ym*ym + zm*zm;
}
float vDistMh(const vec a, const vec b)
{
return (a.x - b.x) + (a.y - b.y) + (a.z - b.z);
}
float vDistLa(const vec v1, const vec v2)
{
const float xm = fabsf(v1.x - v2.x);
const float ym = fabsf(v1.y - v2.y);
const float zm = fabsf(v1.z - v2.z);
float dist = xm;
if(ym > dist)
dist = ym;
if(zm > dist)
dist = zm;
return dist;
}
void vReflect(vec* r, const vec v, const vec n)
{
const float angle = vDot(v, n);
r->x = v.x - (2.f * n.x) * angle;
r->y = v.y - (2.f * n.y) * angle;
r->z = v.z - (2.f * n.z) * angle;
}
int vEqualTol(const vec a, const vec b, const float tol)
{
return a.x >= b.x - tol && a.x <= b.x + tol &&
a.y >= b.y - tol && a.y <= b.y + tol &&
a.z >= b.z - tol && a.z <= b.z + tol;
}
void vMin(vec* r, const vec v1, const vec v2)
{
if(v1.x < v2.x && v1.y < v2.y && v1.z < v2.z)
{
r->x = v1.x;
r->y = v1.y;
r->z = v1.z;
}
r->x = v2.x;
r->y = v2.y;
r->z = v2.z;
}
void vMax(vec* r, const vec v1, const vec v2)
{
if(v1.x > v2.x && v1.y > v2.y && v1.z > v2.z)
{
r->x = v1.x;
r->y = v1.y;
r->z = v1.z;
}
r->x = v2.x;
r->y = v2.y;
r->z = v2.z;
}
int vec_ftoi(float f)
{
if(f < 0.f)
f -= 0.5f;
else
f += 0.5f;
return (int)f;
}
int vEqualInt(const vec a, const vec b)
{
return vec_ftoi(a.x) == vec_ftoi(b.x) && vec_ftoi(a.y) == vec_ftoi(b.y) && vec_ftoi(a.z) == vec_ftoi(b.z);
}
float vMod(const vec v)
{
return sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
}
float vMag(const vec v)
{
return v.x*v.x + v.y*v.y + v.z*v.z;
}
void vCopy(vec* r, const vec v)
{
memcpy(r, &v, sizeof(vec));
}
void vDir(vec* r, const vec v1, const vec v2)
{
vSub(r, v2, v1);
vNorm(r);
}
void vRotX(vec* v, const float radians)
{
v->y = v->y * cosf(radians) + v->z * sinf(radians);
v->z = v->y * sinf(radians) - v->z * cosf(radians);
}
void vRotY(vec* v, const float radians)
{
v->x = v->z * sinf(radians) - v->x * cosf(radians);
v->z = v->z * cosf(radians) + v->x * sinf(radians);
}
void vRotZ(vec* v, const float radians)
{
v->x = v->x * cosf(radians) + v->y * sinf(radians);
v->y = v->x * sinf(radians) - v->y * cosf(radians);
}
void vAdd(vec* r, const vec v1, const vec v2)
{
r->x = v1.x + v2.x;
r->y = v1.y + v2.y;
r->z = v1.z + v2.z;
}
void vSub(vec* r, const vec v1, const vec v2)
{
r->x = v1.x - v2.x;
r->y = v1.y - v2.y;
r->z = v1.z - v2.z;
}
void vDiv(vec* r, const vec numerator, const vec denominator)
{
r->x = numerator.x / denominator.x;
r->y = numerator.y / denominator.y;
r->z = numerator.z / denominator.z;
}
void vMul(vec* r, const vec v1, const vec v2)
{
r->x = v1.x * v2.x;
r->y = v1.y * v2.y;
r->z = v1.z * v2.z;
}
void vAddS(vec* r, const vec v1, const float v2)
{
r->x = v1.x + v2;
r->y = v1.y + v2;
r->z = v1.z + v2;
}
void vSubS(vec* r, const vec v1, const float v2)
{
r->x = v1.x - v2;
r->y = v1.y - v2;
r->z = v1.z - v2;
}
void vDivS(vec* r, const vec v1, const float v2)
{
r->x = v1.x / v2;
r->y = v1.y / v2;
r->z = v1.z / v2;
}
void vMulS(vec* r, const vec v1, const float v2)
{
r->x = v1.x * v2;
r->y = v1.y * v2;
r->z = v1.z * v2;
}
#endif