diff --git a/content/edgedetection.md b/content/edgedetection.md index fc5ec0e9..2c13e959 100644 --- a/content/edgedetection.md +++ b/content/edgedetection.md @@ -25,24 +25,7 @@ ___ ## 4.1: The Filter-Kernels There are a variety of different Kernels used for edge detection; some of the most common ones are Sobel, Scharr, and Prewitt - Kernels. -
-Sobel: - -X-Direction: $\begin{bmatrix}1&0&-1\\2&0&-2\\1&0&-1\end{bmatrix}$          Y-Direction: $\begin{bmatrix}1&2&1\\0&0&0\\-1&-2&-1\end{bmatrix}$ - ---- - -Scharr: - -X-Direction: $\begin{bmatrix}47&0&-47\\162&0&-162\\47&0&-47\end{bmatrix}$      Y-Direction: $\begin{bmatrix}47&162&47\\0&0&0\\-47&-162&-47\end{bmatrix}$ - ---- - -Prewitt: - -X-Direction: $\begin{bmatrix}1&0&-1\\1&0&-1\\1&0&-1\end{bmatrix}$         Y-Direction: $\begin{bmatrix}1&1&1\\0&0&0\\-1&-1&-1\end{bmatrix}$ -
- +
When applying these Filter-Kernels to an image through __convolution__, you essentially create the derivative of the image. This is because these Kernels result in higher pixel-values in regions, where the image contains a sharp change in brightness (similar to derivatives in analysis). This "derivation" is performed in X- and Y-direction seperately.