Skip to content

why is crab's UserBasedRecommender so slow? #85

@lognorder

Description

@lognorder

the benchmark for crab is (http://www.slideshare.net/marcelcaraciolo/crab-a-python-framework-for-building-recommender-systems page-37)

Benchmarks Pure Python w/ Python w/ Scipy Dataset dicts and NumpyMovieLens 100k 15.32 s 9.56 s http://www.grouplens.org/node/73 Old Crab New Crab

however, in my case, I need to take more than 30 minutes to do it, I don't know the reason

my code is

model = MatrixPreferenceDataModel(recommend_data.data)
similarity = UserSimilarity(model, pearson_correlation)
recommender = UserBasedRecommender(model, similarity, with_preference=True)
recommender.recommend("6")

my data is NumpyMovieLens 100k, which contains 100,000 ratings from 1000 users on 1700 movies.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions