-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpytorch_dvc_cnn.py
253 lines (199 loc) · 8.44 KB
/
pytorch_dvc_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# coding: utf-8
# Dogs-vs-cats classification with CNNs
#
# In this script, we'll train a convolutional neural network (CNN,
# ConvNet) to classify images of dogs from images of cats using
# PyTorch. This script is largely based on the blog post [Building
# powerful image classification models using very little
# data](https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html)
# by François Chollet.
#
# **Note that using a GPU with this script is highly recommended.**
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, transforms
from distutils.version import LooseVersion as LV
import os
import h5py
import io
import numpy as np
from PIL import Image
torch.manual_seed(42)
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
print('Using PyTorch version:', torch.__version__, ' Device:', device)
assert(LV(torch.__version__) >= LV("1.0.0"))
num_workers = 10
subpath = 'dogs-vs-cats/train-2000'
if 'DATADIR' in os.environ:
DATADIR = os.environ['DATADIR']
else:
DATADIR = "/scratch/dac/data/"
datapath = os.path.join(DATADIR, subpath)
print('Reading data from path:', datapath)
(nimages_train, nimages_validation, nimages_test) = (2000, 1000, 22000)
def get_tensorboard(log_name):
try:
import tensorboardX
import os
import datetime
logdir = os.path.join(os.getcwd(), "logs",
"dvc-" + log_name + "-" +
datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
print('Logging TensorBoard to:', logdir)
os.makedirs(logdir)
return tensorboardX.SummaryWriter(logdir)
except (ImportError, FileExistsError):
return None
def train(model, loader, criterion, optimizer, epoch, log=None):
# Set model to training mode
model.train()
epoch_loss = 0.
# Loop over each batch from the training set
for batch_idx, (data, target) in enumerate(loader):
# Copy data to GPU if needed
data = data.to(device)
target = target.to(device)
# Zero gradient buffers
optimizer.zero_grad()
# Pass data through the network
output = model(data)
output = torch.squeeze(output)
# Calculate loss
loss = criterion(output, target.to(torch.float32))
epoch_loss += loss.data.item()
# Backpropagate
loss.backward()
# Update weights
optimizer.step()
epoch_loss /= len(loader.dataset)
print('Train Epoch: {}, Loss: {:.4f}'.format(epoch, epoch_loss))
if log is not None:
log.add_scalar('loss', epoch_loss, epoch-1)
def evaluate(model, loader, criterion=None, epoch=None, log=None):
model.eval()
loss, correct = 0, 0
for data, target in loader:
data = data.to(device)
target = target.to(device)
output = torch.squeeze(model(data))
if criterion is not None:
loss += criterion(output, target.to(torch.float32)).data.item()
pred = output > 0.5
pred = pred.to(torch.int64)
correct += pred.eq(target.data).cpu().sum()
if criterion is not None:
loss /= len(loader.dataset)
accuracy = 100. * correct.to(torch.float32) / len(loader.dataset)
print('Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
loss, correct, len(loader.dataset), accuracy))
if log is not None and epoch is not None:
log.add_scalar('val_loss', loss, epoch-1)
log.add_scalar('val_acc', accuracy, epoch-1)
input_image_size = (150, 150)
data_transform = transforms.Compose([
transforms.Resize(input_image_size),
transforms.RandomAffine(degrees=0, translate=None,
scale=(0.8, 1.2), shear=0.2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
noop_transform = transforms.Compose([
transforms.Resize(input_image_size),
transforms.ToTensor()
])
def get_train_loader(batch_size=25):
print('Train: ', end="")
train_dataset = datasets.ImageFolder(root=datapath+'/train',
transform=data_transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size,
shuffle=True, num_workers=num_workers)
print('Found', len(train_dataset), 'images belonging to',
len(train_dataset.classes), 'classes')
return train_loader
class HDF5Dataset(Dataset):
def __init__(self, file_path, dataset_name, transform=None):
self.file_path = file_path
self.dataset_name = dataset_name
self.transform = transform
self.length = None
self._idx_to_name = {}
self.classes = {} # map: name → idx
with h5py.File(self.file_path, 'r') as hf:
for gname, group in hf.items():
if gname == dataset_name:
self.length = len(group)
for i, dd in enumerate(group.items()):
self._idx_to_name[i] = dd[0]
cls = dd[1].attrs['class']
if cls not in self.classes:
ni = len(self.classes)
self.classes[cls] = ni
def __len__(self):
assert self.length is not None
return self.length
def _open_hdf5(self):
self._hf = h5py.File(self.file_path, 'r')
def __getitem__(self, index):
if not hasattr(self, '_hf'):
self._open_hdf5()
assert self._idx_to_name is not None
img_name = self._idx_to_name[index]
ds = self._hf[self.dataset_name][img_name]
x = Image.open(io.BytesIO(np.array(ds)))
y = np.array(self.classes[ds.attrs['class']])
if self.transform:
x = self.transform(x)
else:
x = torch.from_numpy(x)
y = torch.from_numpy(y)
return (x, y)
def get_train_loader_hdf5(batch_size=25):
print('Train: ', end="")
train_dataset = HDF5Dataset(os.path.join(DATADIR, 'dogs-vs-cats.hdf5'), 'train',
transform=data_transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size,
shuffle=True, num_workers=num_workers)
print('Found', len(train_dataset), 'images belonging to',
len(train_dataset.classes), 'classes')
return train_loader
def get_validation_loader(batch_size=25):
print('Validation: ', end="")
validation_dataset = datasets.ImageFolder(root=datapath+'/validation',
transform=noop_transform)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size,
shuffle=False, num_workers=num_workers)
print('Found', len(validation_dataset), 'images belonging to',
len(validation_dataset.classes), 'classes')
return validation_loader
def get_validation_loader_hdf5(batch_size=25):
print('Validation: ', end="")
validation_dataset = HDF5Dataset(os.path.join(DATADIR, 'dogs-vs-cats.hdf5'),
'validation', transform=data_transform)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size,
shuffle=False, num_workers=num_workers)
print('Found', len(validation_dataset), 'images belonging to',
len(validation_dataset.classes), 'classes')
return validation_loader
def get_test_loader(batch_size=25):
print('Test: ', end="")
test_dataset = datasets.ImageFolder(root=datapath+'/test',
transform=noop_transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size,
shuffle=False, num_workers=num_workers)
print('Found', len(test_dataset), 'images belonging to',
len(test_dataset.classes), 'classes')
return test_loader
def get_test_loader_hdf5(batch_size=25):
print('Test: ', end="")
test_dataset = HDF5Dataset(os.path.join(DATADIR, 'dogs-vs-cats.hdf5'),
'test', transform=data_transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size,
shuffle=False, num_workers=num_workers)
print('Found', len(test_dataset), 'images belonging to',
len(test_dataset.classes), 'classes')
return test_loader
if __name__ == '__main__':
print('\nThis Python script is only for common functions. *DON\'T RUN IT DIRECTLY!* :-)')