-
Notifications
You must be signed in to change notification settings - Fork 0
/
dht_mylib.ino
260 lines (215 loc) · 8.27 KB
/
dht_mylib.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#include "Arduino.h"
#define MIN_INTERVAL 2000 /**< min interval value */
#define DEBUG_PRINTER \
Serial /**< Define where debug output will be printed. \
*/
/* Setup debug printing macros. */
#ifdef DHT_DEBUG
#define DEBUG_PRINT(...) \
{ DEBUG_PRINTER.print(__VA_ARGS__); }
#define DEBUG_PRINTLN(...) \
{ DEBUG_PRINTER.println(__VA_ARGS__); }
#else
#define DEBUG_PRINT(...) \
{} /**< Debug Print Placeholder if Debug is disabled */
#define DEBUG_PRINTLN(...) \
{} /**< Debug Print Line Placeholder if Debug is disabled */
#endif
#define TIMEOUT \
UINT32_MAX /**< Used programmatically for timeout. \
Not a timeout duration. Type: uint32_t. */
uint8_t _pin = 2;
uint8_t data[5];
uint32_t _lastreadtime, _maxcycles;
bool _lastresult;
uint8_t pullTime; // Time (in usec) to pull up data line before reading
uint8_t _bit, _port;
uint32_t expectPulse(bool level) {
#if (F_CPU > 16000000L)
uint32_t count = 0;
#else
uint16_t count = 0; // To work fast enough on slower AVR boards
#endif
// On AVR platforms use direct GPIO port access as it's much faster and better
// for catching pulses that are 10's of microseconds in length:
#ifdef __AVR
uint8_t portState = level ? _bit : 0;
while ((*portInputRegister(_port) & _bit) == portState) {
if (count++ >= _maxcycles) {
return TIMEOUT; // Exceeded timeout, fail.
}
}
// Otherwise fall back to using digitalRead (this seems to be necessary on
// ESP8266 right now, perhaps bugs in direct port access functions?).
#else
while (digitalRead(_pin) == level) {
if (count++ >= _maxcycles) {
return TIMEOUT; // Exceeded timeout, fail.
}
}
#endif
return count;
}
bool read(bool force) {
// Check if sensor was read less than two seconds ago and return early
// to use last reading.
uint32_t currenttime = millis();
if (!force && ((currenttime - _lastreadtime) < MIN_INTERVAL)) {
return _lastresult; // return last correct measurement
}
_lastreadtime = currenttime;
// Reset 40 bits of received data to zero.
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
// Send start signal. See DHT datasheet for full signal diagram:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Go into high impedence state to let pull-up raise data line level and
// start the reading process.
pinMode(_pin, INPUT_PULLUP);
delay(1);
// First set data line low for a period according to sensor type
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delay(20); // data sheet says at least 18ms, 20ms just to be safe
uint32_t cycles[80];
{
// End the start signal by setting data line high for 40 microseconds.
pinMode(_pin, INPUT_PULLUP);
// Delay a moment to let sensor pull data line low.
delayMicroseconds(pullTime);
// Now start reading the data line to get the value from the DHT sensor.
// Turn off interrupts temporarily because the next sections
// are timing critical and we don't want any interruptions.
noInterrupts();
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if (expectPulse(LOW) == TIMEOUT) {
DEBUG_PRINTLN(F("DHT timeout waiting for start signal low pulse."));
_lastresult = false;
return _lastresult;
}
if (expectPulse(HIGH) == TIMEOUT) {
DEBUG_PRINTLN(F("DHT timeout waiting for start signal high pulse."));
_lastresult = false;
return _lastresult;
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count). Note that for speed
// all the pulses are read into a array and then examined in a later step.
for (int i = 0; i < 80; i += 2) {
cycles[i] = expectPulse(LOW);
cycles[i + 1] = expectPulse(HIGH);
}
interrupts();
} // Timing critical code is now complete.
// Inspect pulses and determine which ones are 0 (high state cycle count < low
// state cycle count), or 1 (high state cycle count > low state cycle count).
for (int i = 0; i < 40; ++i) {
uint32_t lowCycles = cycles[2 * i];
uint32_t highCycles = cycles[2 * i + 1];
if ((lowCycles == TIMEOUT) || (highCycles == TIMEOUT)) {
DEBUG_PRINTLN(F("DHT timeout waiting for pulse."));
_lastresult = false;
return _lastresult;
}
data[i / 8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i / 8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
DEBUG_PRINTLN(F("Received from DHT:"));
DEBUG_PRINT(data[0], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[1], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[2], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[3], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[4], HEX);
DEBUG_PRINT(F(" =? "));
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
// Check we read 40 bits and that the checksum matches.
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
_lastresult = true;
return _lastresult;
} else {
DEBUG_PRINTLN(F("DHT checksum failure!"));
_lastresult = false;
return _lastresult;
}
}
float convertCtoF(float c) { return c * 1.8 + 32; }
float convertFtoC(float f) { return (f - 32) * 0.55555; }
float readTemperature(bool S, bool force) {
float f = NAN;
if (read(force)) {
f = data[2];
if (data[3] & 0x80) {
f = -1 - f;
}
f += (data[3] & 0x0f) * 0.1;
if (S) {
f = convertCtoF(f);
}
}
return f;
}
float readHumidity(bool force) {
float f = NAN;
if (read(force)) {
f = data[0] + data[1] * 0.1;
}
return f;
}
void begin(uint8_t usec) {
// set up the pins!
pinMode(_pin, INPUT_PULLUP);
// Using this value makes sure that millis() - lastreadtime will be
// >= MIN_INTERVAL right away. Note that this assignment wraps around,
// but so will the subtraction.
_lastreadtime = millis() - MIN_INTERVAL;
DEBUG_PRINT("DHT max clock cycles: ");
DEBUG_PRINTLN(_maxcycles, DEC);
pullTime = usec;
}
void setup() {
// put your setup code here, to run once:
_bit = digitalPinToBitMask(_pin);
_port = digitalPinToPort(_pin);
_maxcycles =
microsecondsToClockCycles(1000); // 1 millisecond timeout for
Serial.begin(9600);
Serial.println(F("DHTxx test!"));
begin(55);
}
void loop() {
delay(2000);
// Reading temperature or humidity takes about 250 milliseconds!
// Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
float h = readHumidity(false);
// Read temperature as Celsius (the default)
float t = readTemperature(false,false);
// Read temperature as Fahrenheit (isFahrenheit = true)
float f = readTemperature(true,false);
// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t) || isnan(f)) {
Serial.println(F("Failed to read from DHT sensor!"));
return;
}
Serial.print(F("Humidity: "));
Serial.print(h);
Serial.print(F("% Temperature: "));
Serial.print(t);
Serial.print(F("°C "));
Serial.println(f);
}