7
7
## Deep Learning
8
8
9
9
### Gradient Descent
10
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/gradient_descent/gradient_descent.pdf " ><img src =" . /thumbs/gradient_descent.gif" alt =" thumb_gradient_descent " height =" 256px " ></a >
10
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/gradient_descent/gradient_descent.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/gradient_descent.gif" alt =" thumb_gradient_descent " height =" 256px " ></a >
11
11
<br >
12
12
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/slides/deep_learning/gradient_descent ) .
13
13
<br >
@@ -16,21 +16,21 @@ Practice (1) [slides](https://github.com/ndrplz/machine_learning_lectures/blob/m
16
16
Practice (2) [ slides] ( https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/tensorflow_linear_regression/tex/tensorflow_regression.pdf ) and [ code] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/tensorflow_linear_regression/code ) (TensorFlow).
17
17
18
18
### Neural Networks and Deep Neural Networks
19
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/deep_neural_networks/deep_neural_networks.pdf " ><img src =" . /thumbs/deep_neural_networks.gif" alt =" thumb_neural_networks " height =" 256px " ></a >
19
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/deep_neural_networks/deep_neural_networks.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/deep_neural_networks.gif" alt =" thumb_neural_networks " height =" 256px " ></a >
20
20
<br >
21
21
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/deep_neural_networks/ ) .
22
22
<br >
23
23
Practice [ slides] ( https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/tensorflow_neural_network/tex/tensorflow_neural_nets.pdf ) and [ code] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/tensorflow_neural_network/code ) (TensorFlow).
24
24
25
25
### Convolutional Neural Networks
26
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/convolutional_neural_networks/convolutional_neural_networks.pdf " ><img src =" . /thumbs/convolutional_neural_networks.gif" alt =" thumb_convnets " height =" 256px " ></a >
26
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/convolutional_neural_networks/convolutional_neural_networks.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/convolutional_neural_networks.gif" alt =" thumb_convnets " height =" 256px " ></a >
27
27
<br >
28
28
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/slides/deep_learning/convolutional_neural_networks ) .
29
29
<br >
30
30
Practice [ slides] ( https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/tensorflow_convolutional_nets/tex/tensorflow_convnets.pdf ) and [ code] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/tensorflow_convolutional_nets/code ) (TensorFlow).
31
31
32
32
### Recurrent Neural Networks
33
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/recurrent_neural_networks/recurrent_neural_networks.pdf " ><img src =" . /thumbs/recurrent_neural_networks.gif" alt =" thumb_recurrent " height =" 256px " ></a >
33
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/recurrent_neural_networks/recurrent_neural_networks.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/recurrent_neural_networks.gif" alt =" thumb_recurrent " height =" 256px " ></a >
34
34
<br >
35
35
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/slides/deep_learning/recurrent_neural_networks ) .
36
36
<br >
@@ -41,14 +41,14 @@ Practice [slides](https://github.com/ndrplz/machine_learning_lectures/blob/maste
41
41
## Reinforcement Learning
42
42
43
43
### Introduction and Model Free Learning
44
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/reinforcement_learning/01_introduction_and_model_free_learning/01_introduction_and_model_free_learning.pdf " ><img src =" . /thumbs/01_introduction_and_model_free_learning.gif" alt =" thumb_model_free " height =" 256px " ></a >
44
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/reinforcement_learning/01_introduction_and_model_free_learning/01_introduction_and_model_free_learning.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/01_introduction_and_model_free_learning.gif" alt =" thumb_model_free " height =" 256px " ></a >
45
45
<br >
46
46
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/reinforcement_learning/01_introduction_and_model_free_learning/ ) .
47
47
<br >
48
48
Practice [ slides] ( https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/q_learning/tex/q_learning.pdf ) and [ code] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/q_learning/code ) (TensorFlow).
49
49
50
50
### Function Approximation
51
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/reinforcement_learning/02_function_approximation/02_function_approximation.pdf " ><img src =" . /thumbs/02_function_approximation.gif" alt =" thumb_fun_approx " height =" 256px " ></a >
51
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/reinforcement_learning/02_function_approximation/02_function_approximation.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/02_function_approximation.gif" alt =" thumb_fun_approx " height =" 256px " ></a >
52
52
<br >
53
53
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/reinforcement_learning/02_function_approximation/ ) .
54
54
@@ -57,47 +57,47 @@ LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/blob/ma
57
57
## Machine Learning
58
58
59
59
### Boosting
60
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/boosting/tex/boosting.pdf " ><img src =" . /thumbs/boosting.gif" alt =" thumb_boosting " height =" 256px " ></a >
60
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/boosting/tex/boosting.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/boosting.gif" alt =" thumb_boosting " height =" 256px " ></a >
61
61
<br >
62
62
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/boosting/tex ) .
63
63
<br >
64
64
Practice code: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/boosting/code ) .
65
65
66
66
### Clustering
67
67
68
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/clustering/tex/clustering.pdf " ><img src =" . /thumbs/clustering.gif" alt =" thumb_clustering " height =" 256px " ></a >
68
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/clustering/tex/clustering.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/clustering.gif" alt =" thumb_clustering " height =" 256px " ></a >
69
69
<br >
70
70
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/clustering/tex ) .
71
71
<br >
72
72
Practice code: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/clustering/code ) .
73
73
74
74
### Dimensionality Reduction
75
75
76
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/dimensionality_reduction/tex/dimensionality_reduction.pdf " ><img src =" . /thumbs/dimensionality_reduction.gif" alt =" thumb_dim_reduction " height =" 256px " ></a >
76
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/dimensionality_reduction/tex/dimensionality_reduction.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/dimensionality_reduction.gif" alt =" thumb_dim_reduction " height =" 256px " ></a >
77
77
<br >
78
78
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/dimensionality_reduction/tex ) .
79
79
<br >
80
80
Practice code: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/dimensionality_reduction/code ) .
81
81
82
82
### Logistic Regression
83
83
84
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/logistic_regression/tex/logistic_regression.pdf " ><img src =" . /thumbs/logistic_regression.gif" alt =" thumb_logistic_regression " height =" 256px " ></a >
84
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/logistic_regression/tex/logistic_regression.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/logistic_regression.gif" alt =" thumb_logistic_regression " height =" 256px " ></a >
85
85
<br >
86
86
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/logistic_regression/tex ) .
87
87
<br >
88
88
Practice code: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/logistic_regression/code ) .
89
89
90
90
### Naive Bayes
91
91
92
- <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/naive_bayes/tex/naive_bayes.pdf " ><img src =" . /thumbs/naive_bayes.gif" alt =" thumb_bayes " height =" 256px " ></a >
92
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/naive_bayes/tex/naive_bayes.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/naive_bayes.gif" alt =" thumb_bayes " height =" 256px " ></a >
93
93
<br >
94
94
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/naive_bayes/tex ) .
95
95
<br >
96
96
Practice code: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/naive_bayes/code ) .
97
97
98
98
### Support Vector Machine (SVM)
99
99
100
- <a href =" https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/support_vector_machines/tex/support_vector_machines.pdf " ><img src =" . /thumbs/support_vector_machines.gif" alt =" thumb_svm " height =" 256px " ></a >
100
+ <a href =" https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/support_vector_machines/tex/support_vector_machines.pdf " ><img src =" https://github.com/ndrplz/machine_learning_lectures/blob/master /thumbs/support_vector_machines.gif" alt =" thumb_svm " height =" 256px " ></a >
101
101
<br >
102
102
LaTeX source: [ here] ( https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/support_vector_machines/tex ) .
103
103
<br >
0 commit comments