|
| 1 | +## 1. Invert and Reverse |
| 2 | + |
| 3 | +::tabs-start |
| 4 | + |
| 5 | +```python |
| 6 | +class Solution: |
| 7 | + def confusingNumber(self, n: int) -> bool: |
| 8 | + # Use 'invertMap' to invert each valid digit. |
| 9 | + invert_map = {"0":"0", "1":"1", "8":"8", "6":"9", "9":"6"} |
| 10 | + rotated_number = [] |
| 11 | + |
| 12 | + # Iterate over each digit of 'n'. |
| 13 | + for ch in str(n): |
| 14 | + if ch not in invert_map: |
| 15 | + return False |
| 16 | + |
| 17 | + # Append the inverted digit of 'ch' to the end of 'rotated_number'. |
| 18 | + rotated_number.append(invert_map[ch]) |
| 19 | + |
| 20 | + rotated_number = "".join(rotated_number) |
| 21 | + |
| 22 | + # Check if the reversed 'rotated_number' equals 'n'. |
| 23 | + return int(rotated_number[::-1]) != n |
| 24 | +``` |
| 25 | + |
| 26 | +```java |
| 27 | +class Solution { |
| 28 | + public boolean confusingNumber(int n) { |
| 29 | + // Use 'invertMap' to invert each valid digit. |
| 30 | + Map<Character, Character> invertMap = new HashMap<>() {{ |
| 31 | + put('0', '0'); |
| 32 | + put('1', '1'); |
| 33 | + put('6', '9'); |
| 34 | + put('8', '8'); |
| 35 | + put('9', '6'); |
| 36 | + }}; |
| 37 | + StringBuilder sb = new StringBuilder(); |
| 38 | + |
| 39 | + // Iterate over each digit of 'n'. |
| 40 | + for (char ch : String.valueOf(n).toCharArray()) { |
| 41 | + if (!invertMap.containsKey(ch)) { |
| 42 | + return false; |
| 43 | + } |
| 44 | + |
| 45 | + // Append the inverted digit of 'ch' to the end of 'rotatedNumber'. |
| 46 | + sb.append(invertMap.get(ch)); |
| 47 | + } |
| 48 | + |
| 49 | + // Check if the reversed 'rotatedNumber' equals 'n'. |
| 50 | + sb.reverse(); |
| 51 | + return Integer.parseInt(sb.toString()) != n; |
| 52 | + } |
| 53 | +} |
| 54 | +``` |
| 55 | + |
| 56 | +```cpp |
| 57 | +class Solution { |
| 58 | +public: |
| 59 | + bool confusingNumber(int n) { |
| 60 | + // Use 'invertMap' to invert each valid digit. |
| 61 | + unordered_map<char, char> invertMap = {{'0','0'}, {'1','1'}, {'6','9'}, {'8','8'}, {'9','6'}}; |
| 62 | + string rotatedNumber; |
| 63 | + |
| 64 | + // Iterate over each digit of 'n'. |
| 65 | + for (auto ch : to_string(n)) { |
| 66 | + if (invertMap.find(ch) == invertMap.end()) { |
| 67 | + return false; |
| 68 | + } |
| 69 | + |
| 70 | + // Append the inverted digit of 'ch' to the end of 'rotatedNumber'. |
| 71 | + rotatedNumber += invertMap[ch]; |
| 72 | + } |
| 73 | + |
| 74 | + // Check if the reversed 'rotatedNumber' equals 'n'. |
| 75 | + reverse(begin(rotatedNumber), end(rotatedNumber)); |
| 76 | + return stoi(rotatedNumber) != n; |
| 77 | + } |
| 78 | +}; |
| 79 | +``` |
| 80 | +
|
| 81 | +```javascript |
| 82 | +class Solution { |
| 83 | + /** |
| 84 | + * @param {number} n |
| 85 | + * @return {boolean} |
| 86 | + */ |
| 87 | + confusingNumber(n) { |
| 88 | + // Use 'invertMap' to invert each valid digit. |
| 89 | + const invertMap = { |
| 90 | + '0': '0', |
| 91 | + '1': '1', |
| 92 | + '6': '9', |
| 93 | + '8': '8', |
| 94 | + '9': '6' |
| 95 | + }; |
| 96 | + |
| 97 | + let rotatedNumber = ''; |
| 98 | + // Iterate over each digit of 'n'. |
| 99 | + for (const ch of String(n)) { |
| 100 | + if (!(ch in invertMap)) { |
| 101 | + return false; |
| 102 | + } |
| 103 | + // Append the inverted digit of 'ch' to the end of 'rotatedNumber'. |
| 104 | + rotatedNumber += invertMap[ch]; |
| 105 | + } |
| 106 | + // Check if the reversed 'rotatedNumber' equals 'n'. |
| 107 | + rotatedNumber = rotatedNumber.split('').reverse().join(''); |
| 108 | + return parseInt(rotatedNumber) !== n; |
| 109 | + } |
| 110 | +} |
| 111 | +``` |
| 112 | + |
| 113 | +::tabs-end |
| 114 | + |
| 115 | +### Time & Space Complexity |
| 116 | + |
| 117 | +- Time complexity: $O(L)$ |
| 118 | +- Space complexity: $O(L)$ extra space used |
| 119 | + |
| 120 | +> Where $L$ is the maximum number of digits $n$ can have ($L = \log_{10} n$). |
| 121 | +
|
| 122 | +--- |
| 123 | + |
| 124 | +## 2. Use the remainder |
| 125 | + |
| 126 | +::tabs-start |
| 127 | + |
| 128 | +```python |
| 129 | +class Solution: |
| 130 | + def confusingNumber(self, n: int) -> bool: |
| 131 | + # Use 'invert_map' to invert each valid digit. Since we don't want to modify |
| 132 | + # 'n', we create a copy of it as 'nCopy'. |
| 133 | + invert_map = {0:0, 1:1, 8:8, 6:9, 9:6} |
| 134 | + invert_number = 0 |
| 135 | + n_copy = n |
| 136 | + |
| 137 | + # Get every digit of 'n_copy' by taking the remainder of it to 10. |
| 138 | + while n_copy: |
| 139 | + res = n_copy % 10 |
| 140 | + if res not in invert_map: |
| 141 | + return False |
| 142 | + |
| 143 | + # Append the inverted digit of 'res' to the end of 'rotated_number'. |
| 144 | + invert_number = invert_number * 10 + invert_map[res] |
| 145 | + n_copy //= 10 |
| 146 | + |
| 147 | + # Check if 'rotated_number' equals 'n'. |
| 148 | + return invert_number != n |
| 149 | +``` |
| 150 | + |
| 151 | +```java |
| 152 | +class Solution { |
| 153 | + public boolean confusingNumber(int n) { |
| 154 | + // Use 'invertMap' to invert each valid digit. Since we don't want to modify |
| 155 | + // 'n', we create a copy of it as 'nCopy'. |
| 156 | + Map<Integer, Integer> invertMap = new HashMap<>() {{ |
| 157 | + put(0, 0); |
| 158 | + put(1, 1); |
| 159 | + put(6, 9); |
| 160 | + put(8, 8); |
| 161 | + put(9, 6); |
| 162 | + }}; |
| 163 | + int nCopy = n, rotatedNumber = 0; |
| 164 | + |
| 165 | + // Get every digit of 'nCopy' by taking the remainder of it to 10. |
| 166 | + while (nCopy > 0) { |
| 167 | + int res = nCopy % 10; |
| 168 | + if (!invertMap.containsKey(res)) { |
| 169 | + return false; |
| 170 | + } |
| 171 | + |
| 172 | + // Append the inverted digit of 'res' to the end of 'rotatedNumber'. |
| 173 | + rotatedNumber = rotatedNumber * 10 + invertMap.get(res); |
| 174 | + nCopy /= 10; |
| 175 | + } |
| 176 | + |
| 177 | + // Check if 'rotatedNumber' equals 'n'. |
| 178 | + return rotatedNumber != n; |
| 179 | + } |
| 180 | +} |
| 181 | +``` |
| 182 | + |
| 183 | +```cpp |
| 184 | +class Solution { |
| 185 | +public: |
| 186 | + bool confusingNumber(int n) { |
| 187 | + // Use 'invertMap' to invert each valid digit. Since we don't want to modify |
| 188 | + // 'n', we create a copy of it as 'nCopy'. |
| 189 | + map<int, int> invertMap = {{0, 0}, {1, 1}, {6, 9}, {8, 8}, {9, 6}}; |
| 190 | + int rotatedNumber = 0, nCopy = n; |
| 191 | + |
| 192 | + // Get every digit of 'nCopy' by taking the remainder of it to 10. |
| 193 | + while (nCopy > 0) { |
| 194 | + int res = nCopy % 10; |
| 195 | + if (invertMap.find(res) == invertMap.end()) { |
| 196 | + return false; |
| 197 | + } |
| 198 | + |
| 199 | + // Append the inverted digit of 'res' to the end of 'rotatedNumber'. |
| 200 | + rotatedNumber = rotatedNumber * 10 + invertMap[res]; |
| 201 | + nCopy /= 10; |
| 202 | + } |
| 203 | + |
| 204 | + // Check if 'rotatedNumber' equals 'n'. |
| 205 | + return rotatedNumber != n; |
| 206 | + } |
| 207 | +}; |
| 208 | +``` |
| 209 | + |
| 210 | +```javascript |
| 211 | +class Solution { |
| 212 | + /** |
| 213 | + * @param {number} n |
| 214 | + * @return {boolean} |
| 215 | + */ |
| 216 | + confusingNumber(n) { |
| 217 | + // Use 'invertMap' to invert each valid digit. Since we don't want to modify |
| 218 | + // 'n', we create a copy of it as 'nCopy'. |
| 219 | + const invertMap = { |
| 220 | + 0: 0, |
| 221 | + 1: 1, |
| 222 | + 6: 9, |
| 223 | + 8: 8, |
| 224 | + 9: 6 |
| 225 | + }; |
| 226 | + let nCopy = n; |
| 227 | + let rotatedNumber = 0; |
| 228 | + |
| 229 | + // Get every digit of 'nCopy' by taking the remainder of it to 10. |
| 230 | + while (nCopy > 0) { |
| 231 | + let res = nCopy % 10; |
| 232 | + if (!(res in invertMap)) { |
| 233 | + return false; |
| 234 | + } |
| 235 | + // Append the inverted digit of 'res' to the end of 'rotatedNumber'. |
| 236 | + rotatedNumber = rotatedNumber * 10 + invertMap[res]; |
| 237 | + nCopy = Math.floor(nCopy / 10); |
| 238 | + } |
| 239 | + // Check if 'rotatedNumber' equals 'n'. |
| 240 | + return rotatedNumber !== n; |
| 241 | + } |
| 242 | +} |
| 243 | +``` |
| 244 | + |
| 245 | +::tabs-end |
| 246 | + |
| 247 | +### Time & Space Complexity |
| 248 | + |
| 249 | +- Time complexity: $O(L)$ |
| 250 | +- Space complexity: $O(L)$ extra space used |
| 251 | + |
| 252 | +> Where $L$ is the maximum number of digits $n$ can have. |
0 commit comments