-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimpar-omp.c
276 lines (230 loc) · 7.56 KB
/
simpar-omp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/**
* @file simpar.c
* @authors: Filipe Marques, Luís Fonseca
* @date 29 Abr 2019
* @brief Header Parallellized implementation of simpar.h containing the particle simulation functions's source and main.
*/
#include "simpar.h"
#include "omp.h"
cell_t ** dummy;
void usg_err()
{
printf("\t[-] usage : ./simpar <seed> <ncside> <n_par> <n_step>");
printf("\t\t[-] int <seed> : seed for random number generation.\n");
printf("\t\t[-] int <ncside> : size of the grid (number of cells on the side.\n");
printf("\t\t[-] int <n_par> : number of particles\n");
printf("\t\t[-] int <n_par> : number of time-steps\n");
exit(1);
}
long long val_l(const char* arg)
{
char *endptr;
long long x = strtol(arg, &endptr, 10); /*Parse long from *arg*/
if (endptr == arg) {
printf("[-] ERROR: Invalid number: %s\n", arg);
return 0;
} else if (*endptr) {
printf("[-] ERROR: Trailing characters after number: %s\n", arg);
} else if (x <= 0) {
printf("[-] ERROR: Number must be positive: %llu\n", x);
return 0;
}
return x;
}
cell_t** init_grid(const long ncside)
{
cell_t** grid = (cell_t**) calloc(ncside, sizeof(cell_t*));
dummy = (cell_t**)calloc(ncside, sizeof(cell_t*));
for(long c=0; c<ncside; c++)
{
grid[c] = (cell_t*)calloc(ncside, sizeof(cell_t));
dummy[c] = (cell_t*)calloc(ncside, sizeof(cell_t));
if(grid[c] == NULL)
exit(0);
if(dummy[c] == NULL)
exit(0);
}
return grid;
}
void free_grid(cell_t** grid, long ncside)
{
for(long c=0; c<ncside; c++)
{
free(grid[c]);
free(dummy[c]);
}
free(grid);
free(dummy);
}
void init_particles(long seed, long ncside, long long n_part, particle_t *par)
{
long long i;
srandom(seed);
for(i=0; i < n_part; i++)
{
par[i].x = RND0_1;
par[i].y = RND0_1;
par[i].vx = RND0_1 / ncside / 10.0;
par[i].vy = RND0_1 / ncside / 10.0;
par[i].m = RND0_1 * ncside / (G * 1e6 * n_part);
}
}
void init_env(cell_t** grid, long ncside, particle_t* p, long long n_par)
{
#pragma parallel for
for(long long i=0; i<n_par; i++)
{
p[i].cx = (long) p[i].x * ncside;
p[i].cy = (long) p[i].y * ncside;
#pragma omp atomic
grid[p[i].cx][p[i].cy].M += p[i].m;
dummy[p[i].cx][p[i].cy].M += p[i].m;
#pragma omp atomic
grid[p[i].cx][p[i].cy].x += p[i].m * p[i].x;
dummy[p[i].cx][p[i].cy].x += p[i].m * p[i].x;
#pragma omp atomic
grid[p[i].cx][p[i].cy].y += p[i].m * p[i].y;
dummy[p[i].cx][p[i].cy].y += p[i].m * p[i].y;
}
}
void accellerate_p(double* ax, double* ay, const cell_t* c, double m, double x, double y)
{
// Avoid calculation when cell is empty
if((c->M) == 0.0)
return;
//double dirx = 1.0, diry = 1.0,
double magnitude;
double dx = ((c->x)/(c->M)) - x;
double dy = ((c->y)/(c->M)) - y;
double d_2 = (dx*dx)+(dy*dy);
if(sqrt(d_2) < EPSLON)
return;
//if(dx<0.0){ dirx = -1.0; }else if(dx == 0.0){ dirx = 0.0; }
//if(dy<0.0){ diry = -1.0; }else if(dy == 0.0){ diry = 0.0; }
magnitude = (((c->M)*G)/d_2);
*ax += dx * magnitude;
*ay += dy * magnitude;
}
void update_particles(cell_t** grid, long ncside, particle_t* par, long long n_par, long n_step, long step)
{
double m, px, py, ax, ay;
long cx, cy, nx, ny, ux, uy, lx, ly;
#pragma omp parallel if(n_par*n_step > 1000000)
{
#pragma omp for private(m, px, py, ax, ay, cx, cy, nx, ny, ux, uy, lx, ly), reduction(+:t_mass, t_cx, t_cy), schedule(dynamic, 1000)
for(long long i=0; i<n_par; i++)
{
m = par[i].m;
px = par[i].x;
py = par[i].y;
cx = (long) px * ncside, nx;
cy = (long) py * ncside, ny;
ux = cx+1; uy = cy+1; lx = cx-1; ly = cy-1;
if(ux >= ncside)
ux = 0;
else if(lx < 0)
lx = ncside-1;
if(uy >= ncside)
uy = 0;
else if(ly < 0)
ly = ncside-1;
ax = 0.0;
ay = 0.0;
accellerate_p(&ax, &ay, &(dummy[cx][cy]), m, px, py); // current cell
accellerate_p(&ax, &ay, &(dummy[ux][cy]), m, px, py); // right cell
accellerate_p(&ax, &ay, &(dummy[lx][cy]), m, px, py); // left cell
//upper adjacents
accellerate_p(&ax, &ay, &(dummy[cx][uy]), m, px, py); // upper cell
accellerate_p(&ax, &ay, &(dummy[lx][uy]), m, px, py); // upper left cell
accellerate_p(&ax, &ay, &(dummy[ux][uy]), m, px, py); // upper right cell
//lower adjacents
accellerate_p(&ax, &ay, &(dummy[cx][ly]), m, px, py); // lower cell
accellerate_p(&ax, &ay, &(dummy[lx][ly]), m, px, py); // lower left cell
accellerate_p(&ax, &ay, &(dummy[ux][ly]), m, px, py); // lower right cell
//update velocity
par[i].vx += ax;
par[i].vy += ay;
//update position
par[i].x += par[i].vx + ax*0.5;
while(par[i].x >= 1.0)
par[i].x -= 1.0;
while(par[i].x < 0.0)
par[i].x += 1.0;
par[i].y += par[i].vy + ay*0.5;
while(par[i].y >= 1.0)
par[i].y -= 1.0;
while(par[i].y < 0.0)
par[i].y += 1.0;
//update cells if cell changed maybe outside loop?
nx = (long) par[i].x*ncside;
ny = (long) par[i].y*ncside;
if(cx-nx || cy-ny)
{
if(cx-nx) par[i].cx = nx;
if(cy-ny) par[i].cy = ny;
#pragma omp atomic
grid[cx][cy].M -= m;
#pragma omp atomic
grid[cx][cy].x -= m * px;
#pragma omp atomic
grid[cx][cy].y -= m * py;
#pragma omp atomic
grid[nx][ny].M += m;
#pragma omp atomic
grid[nx][ny].x += m * par[i].x;
#pragma omp atomic
grid[nx][ny].y += m * par[i].y;
}
if(n_step-1-step == 0)
{
t_mass += par[i].m;
t_cx += par[i].m * par[i].x;
t_cy += par[i].m * par[i].y;
}
}
}
#pragma omp parallel for
for(long c = 0; c<ncside; c++)
{
for(long l = 0; l<ncside; l++)
{
dummy[c][l] = grid[c][l];
}
}
}
int main(int argc, const char * argv[])
{
if(argc != 5)
{
printf("[-] ERROR: Invalid number of arguments... Expected 4 but got %d\n", argc-1);
usg_err();
}
const long seed = (long) val_l(argv[1]);
const long ncside = (long) val_l(argv[2]);
const long long n_par = val_l(argv[3]);
const long n_step = (long) val_l(argv[4]);
if(!(seed*ncside*n_par*n_step))
usg_err();
double start_t, end_t;
double elapsed_t;
start_t = omp_get_wtime();
particle_t* par = (particle_t*) calloc(n_par, sizeof(particle_t));
init_particles(seed, ncside, n_par, par);
cell_t** grid = init_grid(ncside);
if(grid==NULL || par == NULL) exit(0);
init_env(grid, ncside, par, n_par);
for(long step = 0; step < n_step; step++)
{
update_particles(grid, ncside, par, n_par, n_step, step);
}
t_cx /= t_mass;
t_cy /= t_mass;
printf("%.2f %.2f\n", par[0].x, par[0].y);
printf("%.2f %.2f\n", t_cx, t_cy);
end_t = omp_get_wtime();
elapsed_t = ((double) (end_t - start_t));
//printf("%f (s)\n", elapsed_t);
free(par);
free_grid(grid, ncside);
return 0;
}