-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
30 lines (25 loc) · 1 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
from codeContrast import CodeContrast
from config import Config
from dataset import ProgrammingExerciseDataset
config = Config()
# Load trained model
model = CodeContrast(config)
model.load_state_dict(torch.load('path/to/model/checkpoint.pth'))
model.eval()
# Load test dataset
test_dataset = ProgrammingExerciseDataset('path/to/test/data')
# Generate programming exercises
generated_exercises = []
for problem, test_case, solution in test_dataset:
with torch.no_grad():
problem_input = model.problem_encoder(problem)
test_case_input = model.test_case_encoder(test_case)
generated_solution = model.code_decoder(problem_input, test_case_input)
generated_exercises.append((problem, test_case, generated_solution))
# Save generated exercises to file
with open('generated_exercises.txt', 'w') as f:
for exercise in generated_exercises:
f.write(f"Problem: {exercise[0]}\n")
f.write(f"Test Case: {exercise[1]}\n")
f.write(f"Solution: {exercise[2]}\n\n")