forked from tosone/bge-m3-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
101 lines (76 loc) · 3.82 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from enum import Enum
from typing import List, Tuple
from FlagEmbedding import BGEM3FlagModel
from fastapi import FastAPI
from pydantic import BaseModel, Field
import uvicorn
import os
# gpu batch_size in order of your available vram
batch_size = 12 if os.getenv('BGE_M3_BATCH_SIZE') == "" or os.getenv('BGE_M3_BATCH_SIZE') == None else int(os.getenv('BGE_M3_BATCH_SIZE'))
# max context length for embeddings and passages in re-ranker
max_length = 8192 if os.getenv('BGE_M3_MAX_LENGTH') == "" or os.getenv('BGE_M3_MAX_LENGTH') == None else int(os.getenv('BGE_M3_MAX_LENGTH'))
# max context length for questions in re-ranker
max_query_length = 512 if os.getenv('BGE_M3_MAX_QUERY_LENGTH') == "" or os.getenv('BGE_M3_MAX_QUERY_LENGTH') == None else int(os.getenv('BGE_M3_MAX_QUERY_LENGTH'))
# re-rank score weights
rerank_weights = [0.4, 0.2, 0.4] if os.getenv('BGE_M3_RERANKER_WEIGHTS') == "" or os.getenv('BGE_M3_RERANKER_WEIGHTS') == None else [float(x) for x in os.getenv('BGE_M3_RERANKER_WEIGHTS').split(",")]
model_name = 'BAAI/bge-m3' if os.getenv('BGE_M3_MODEL_NAME') == "" or os.getenv('BGE_M3_MODEL_NAME') == None else os.getenv('BGE_M3_MODEL_NAME')
class EmbeddingType(Enum):
dense = 'dense'
sparse = 'sparse'
colbert = 'colbert'
class m3Wrapper:
def __init__(self, model_name: str):
self.model = BGEM3FlagModel(model_name, use_fp16=True)
def embedding(self, sentences: List[str], type: EmbeddingType) -> List[List[float]]:
embeddings = self.model.encode(
sentences,
batch_size=batch_size,
max_length=max_length,
return_dense=True if type == None or type == EmbeddingType.dense else False,
return_sparse=True if type == EmbeddingType.sparse else False,
return_colbert_vecs=True if type == EmbeddingType.colbert else False,
)
if embeddings['dense_vecs'] is not None:
return embeddings['dense_vecs'].tolist()
else:
return []
def reranker(self, sentences: List[Tuple[str, str]]) -> List[float]:
scores = self.model.compute_score(
sentences,
batch_size=batch_size,
max_query_length=max_query_length,
max_passage_length=max_length,
weights_for_different_modes=rerank_weights,
)
return scores['colbert+sparse+dense']
model = m3Wrapper(model_name)
class EmbeddingResponse(BaseModel):
vectors: List[List[float]]
class EmbeddingRequest(BaseModel):
sentences: List[str] = Field(
title="The reranker sentences", max_length=8192, max_items=10
)
type: EmbeddingType | None
class RerankerRequest(BaseModel):
target: str = Field(
title="The reranker target string", max_length=8192
)
sentences: List[str] = Field(
title="The reranker sentences", max_length=8192, max_items=10
)
class RerankerResponse(BaseModel):
scores: List[float]
app = FastAPI()
@app.post("/embedding", response_model=EmbeddingResponse)
async def get_embeddings(request: EmbeddingRequest):
return EmbeddingResponse(vectors=model.embedding(request.sentences, request.type))
@app.post("/reranker", response_model=RerankerResponse)
async def rerank(request: RerankerRequest):
sentence_pars = []
for s in request.sentences:
sentence_pars.append([request.target, s])
return RerankerResponse(scores=model.reranker(sentence_pars))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=3000)
# curl -X POST -k -v http://127.0.0.1:3000/embedding -H "Content-Type: application/json" -d '{"sentences":["xx"], "type":"dense"}'
# curl -X POST -k -v http://127.0.0.1:3000/reranker -H "Content-Type: application/json" -d '{"target": "What is BGE M3?","sentences":["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", "xxx"], "type":"dense"}'