-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtree.c
339 lines (262 loc) · 10.1 KB
/
tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#include <assert.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include "tree.h"
#define SWAP(x, y) do { typeof(x) SWAP = x; x = y; y = SWAP; } while (0)
static inline bool arr_get_bit(const uint64_t *arr, size_t n) {
return !!(arr[n >> 6] & (1ULL << (n & 0x3f)));
}
static inline void arr_set_bit(uint64_t *arr, size_t n) {
arr[n >> 6] |= (1ULL << (n & 0x3f));
}
static const uint32_t HASHTABLE_MASK = 0xfffff;
static uint32_t compute_hash(uint32_t n) {
uint32_t k = n * n;
k += (n >> 10) ^ ((~n) & 0x3ff);
k += ((n >> 5) ^ ((~n) & 0x7fff)) << 5;
k += (((~n) >> 15) ^ (n & 0x1f)) << 5;
k += (n >> 4) & 0x55aa55;
k += ((~n) >> 8) & 0xaa55aa;
return k & HASHTABLE_MASK;
}
static const node_t *tree_next(const tree_t *tree, const node_t *node) {
if (tree->root == node) return tree->nodes;
else return node + 1;
}
static node_t *tree_from_index(const tree_t *tree, uint32_t index) {
if (!index) return NULL;
else return tree->nodes + index - 1;
}
static uint32_t tree_index(const tree_t *tree, const node_t *node) {
if (tree->root == node) return 0;
else return node - tree->nodes + 1;
}
static move_t node_move(const node_t *node) {
// 76543210 76543210
// 111111 from
// 1111 11 to
// 01110000 00000000 7 << 12
// 11110000 00000000 0xf000
// 10000000 00000000 ep
// 01111111 11111111 0x7fff
uint16_t move = node->move;
if (move == 0xfedc || move == 0xedc) return 0;
// hack for unsolved proof
if ((move >> 12) > 8 || (move >> 12) == 7) move ^= 0xf000;
// strip ep mask
move &= 0x7fff;
return move;
}
static inline bool node_is_trans(const node_t *node) {
return (node->data & (1U << 31)) == (1U << 31);
}
static inline bool node_trans_and_sibling(const node_t *node) {
return (node->data & (3U << 30)) == (3U << 30);
}
static inline uint32_t node_trans_index(const node_t *node) {
return node->data & 0x3fffffff;
}
static inline bool node_has_child(const node_t *node) {
return ((node->data & (3U << 30)) == (1U << 30)) && ((node->data & 0x3fffffff) != 0x3fffffff);
}
static const node_t *tree_trans(const tree_t *tree, const node_t *node) {
return tree_from_index(tree, node_trans_index(node));
}
static const node_t *tree_trans_ns(const tree_t *tree, const node_t *node) {
if ((node->data & 0x3fffffff) != 0x3fffffff) return tree_from_index(tree, node->data & 0x3fffffff);
else return ((node->data & (1U << 30)) == (1U << 30)) ? tree_next(tree, node) : NULL;
}
static const node_t *tree_next_sibling(const tree_t *tree, const node_t *node) {
if (node_trans_and_sibling(node)) return tree_next(tree, node);
else return node_is_trans(node) ? NULL : tree_trans_ns(tree, node);
}
static uint32_t tree_lookup_subtree_size(const tree_t *tree, const node_t *node) {
while (node_is_trans(node)) node = tree_trans(tree, node);
uint32_t index = tree_index(tree, node);
uint32_t bucket = compute_hash(index);
while (tree->hashtable[bucket].index) {
if (index == tree->hashtable[bucket].index) return tree->hashtable[bucket].size;
bucket = (bucket + 1) & HASHTABLE_MASK;
}
return 0;
}
static bool tree_save_subtree_size(tree_t *tree, const node_t *node, uint32_t size) {
if (tree->num_hash_entries > HASHTABLE_MASK / 8) {
// do not fill table too much
return false;
}
while (node_is_trans(node)) node = tree_trans(tree, node);
uint32_t bucket = compute_hash(tree_index(tree, node));
while (tree->hashtable[bucket].index) {
bucket = (bucket + 1) & HASHTABLE_MASK;
}
tree->hashtable[bucket].index = tree_index(tree, node);
tree->hashtable[bucket].size = size;
tree->num_hash_entries++;
if (!node_has_child(node)) return true;
if (!tree_next_sibling(tree, tree_next(tree, node)))
return tree_save_subtree_size(tree, tree_next(tree, node), (size > 0) ? (size - 1) : 0);
return true;
}
bool tree_open(tree_t *tree, const char *filename) {
tree->fd = open(filename, O_RDONLY);
if (tree->fd == -1) return false;
struct stat sb;
if (fstat(tree->fd, &sb) == -1) return false;
tree->root = mmap(NULL, sb.st_size, PROT_READ, MAP_SHARED, tree->fd, 0);
if (tree->root == MAP_FAILED) return false;
const size_t page_size = sysconf(_SC_PAGE_SIZE);
tree->num_pages = sb.st_size / page_size;
if (sb.st_size % page_size > 0) tree->num_pages++;
tree->prolog_len = tree->root->move;
tree->prolog = (move_t *)(tree->root + 1);
tree->nodes = (node_t *)(tree->prolog + tree->prolog_len);
tree->size = node_trans_index(tree->root);
if (!tree->size) return false;
tree->arr = calloc(tree->size / 8 + 64, 1);
if (!tree->arr) return false;
tree->num_hash_entries = 0;
tree->hashtable = calloc(HASHTABLE_MASK + 1, sizeof(hash_entry_t));
if (!tree->hashtable) return false;
// prime hash table
uint32_t *data = (uint32_t *)(tree->nodes + tree->size - 1);
while ((uint8_t *) data < ((uint8_t *) tree->root) + sb.st_size) {
node_t *node = tree_from_index(tree, *data++);
if (!node) node = tree->root;
uint32_t size = *data++;
if (!tree_lookup_subtree_size(tree, node)) {
bool success = tree_save_subtree_size(tree, node, size);
assert(success);
}
}
return true;
}
void tree_close(tree_t *tree) {
if (tree->hashtable) free(tree->hashtable);
if (tree->arr) free(tree->arr);
munmap(tree->root, tree->num_pages * sysconf(_SC_PAGE_SIZE));
close(tree->fd);
memset(tree, 0, sizeof(tree_t));
}
static const node_t *tree_move(const tree_t *tree, move_t move, const node_t *node) {
if (!node) return NULL;
if (!node_has_child(node)) return NULL;
const node_t *child = tree_next(tree, node);
do {
if (node_move(child) == move) {
while (node_is_trans(child)) child = tree_trans(tree, child);
return child;
}
} while ((child = tree_next_sibling(tree, child)));
return NULL;
}
void tree_debug(const tree_t *tree, bool dump_hashtable) {
printf("tree size = %u (%zumb) \n", tree->size, (sizeof(node_t) * tree->size) >> 20);
for (size_t i = 0; i < tree->prolog_len; i++) {
char uci[8];
move_uci(tree->prolog[i], uci);
printf("prolog[%zu] = %s\n", i, uci);
}
if (dump_hashtable) {
for (size_t i = 0; i <= HASHTABLE_MASK; i++) {
if (tree->hashtable[i].index) printf("hashtable[%zu] = <%d, %d>\n", i, tree->hashtable[i].index, tree->hashtable[i].size);
}
}
}
static void tree_walk(tree_t *tree, const node_t *node, bool transpositions) {
uint32_t index = tree_index(tree, node);
uint16_t k = node->move >> 12;
assert(node_trans_index(node) != 0x3fffffff);
assert(node->move == 0xfedc || (k != 7 && k < 9));
if (transpositions) {
if (arr_get_bit(tree->arr, index)) return;
arr_set_bit(tree->arr, index);
}
if (node_is_trans(node)) {
tree_walk(tree, tree_trans(tree, node), transpositions);
return;
}
if (!transpositions) {
if (arr_get_bit(tree->arr, index)) return;
arr_set_bit(tree->arr, index);
}
if (!node_has_child(node)) return;
const node_t *child = tree_next(tree, node);
do {
tree_walk(tree, child, transpositions);
} while ((child = tree_next_sibling(tree, child)));
}
static uint32_t tree_subtree_size(tree_t *tree, const node_t *node) {
if (tree->root == node) return tree->size;
uint16_t k = node->move >> 12;
assert(node_trans_index(node) != 0x3fffffff);
assert(node->move == 0xfedc || (k != 7 && k < 9));
while (node_is_trans(node)) node = tree_trans(tree, node);
uint32_t subtree_size = tree_lookup_subtree_size(tree, node);
if (subtree_size) return subtree_size;
uint32_t size = (tree->size + 63) / 64;
memset(tree->arr, 0, sizeof(uint64_t) * size);
tree_walk(tree, node, false);
for (uint32_t i = 0; i < size; i++) {
subtree_size += bb_popcount(tree->arr[i]);
}
tree_save_subtree_size(tree, node, subtree_size);
return subtree_size;
}
void query_result_clear(query_result_t *result) {
memset(result, 0, sizeof(query_result_t));
}
static void query_result_add(query_result_t *result, move_t move, uint32_t size) {
for (size_t i = 0; i < result->num_children; i++) {
if (result->moves[i] == move) {
result->sizes[i] += size;
return;
}
}
assert(result->num_children < MAX_LEGAL_MOVES);
result->moves[result->num_children] = move;
result->sizes[result->num_children] = size;
result->num_children++;
}
void query_result_sort(query_result_t *result) {
for (size_t i = 0; i < result->num_children; i++) {
for (size_t j = 0; j < result->num_children - i - 1; j++) {
if (result->sizes[j] < result->sizes[j + 1]) {
SWAP(result->sizes[j], result->sizes[j + 1]);
SWAP(result->moves[j], result->moves[j + 1]);
}
}
}
}
static bool tree_query_children(tree_t *tree, const node_t *node, query_result_t *result) {
assert(node);
if (!node_has_child(node)) return false;
const node_t *child = tree_next(tree, node);
do {
query_result_add(result, node_move(child), tree_subtree_size(tree, child));
} while ((child = tree_next_sibling(tree, child)));
return true;
}
bool tree_query(tree_t *tree, const move_t *moves, size_t moves_len, query_result_t *result) {
if (tree->prolog_len > moves_len) {
for (size_t i = 0; i < moves_len; i++) {
if (tree->prolog[i] != moves[i]) return false;
}
query_result_add(result, tree->prolog[moves_len], tree->size + tree->prolog_len - moves_len);
return true;
}
for (size_t i = 0; i < tree->prolog_len; i++) {
if (tree->prolog[i] != moves[i]) return false;
}
const node_t *node = tree->root;
for (size_t i = tree->prolog_len; i < moves_len; i++) {
node = tree_move(tree, moves[i], node);
if (!node) return false;
}
return tree_query_children(tree, node, result);
}