This repository has been archived by the owner on Dec 15, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
solver.py
executable file
·927 lines (866 loc) · 45 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
#!/usr/bin/env python3
import sys, argparse, threading, logging, traceback, vgrid
import numpy as np
from functools import partial
from collections import namedtuple
from scipy import optimize, interpolate
parser = argparse.ArgumentParser(description='Solver for the plane Couette-flow problem')
parser.add_argument('-U', type=float, default=2e-2, metavar='<float>', help='difference in velocity of plates')
parser.add_argument('-k', '--kn', type=float, default=0.1, metavar='<float>', help='modified Knudsen number')
parser.add_argument('-N1', type=int, default=4, metavar='<int>', help='number of cells in the first domain')
parser.add_argument('-N2', type=int, default=4, metavar='<int>', help='number of cells in the second domain')
parser.add_argument('-g', '--grid', default='polynomial', metavar='uniform|hermite|polynomial|geometric', help='type of the grid along xi_y')
parser.add_argument('-M', type=int, default=8, metavar='<int>', help='number of points along xi_x, xi_z')
parser.add_argument('-My', type=int, default=2, metavar='<int>', help='factor for number of points along xi_y')
parser.add_argument('-q', '--ratio', type=float, default=1.15, metavar='<float>', help='ratio for the geometric grid')
parser.add_argument('--w-min', type=float, default=0.1, metavar='<float>', help='minimum weight for the polynomial grid')
parser.add_argument('--poly', type=float, default=2, metavar='<float>', help='power for the polynomial grid')
parser.add_argument('-e', '--end', type=int, default=int(1e2), metavar='<int>', help='maximum total time')
parser.add_argument('-w', '--width', type=float, default=1.2, metavar='<expr>', help='width of the right domain in terms of mean free path')
parser.add_argument('-s', '--step', type=float, default=1.0, metavar='<float>', help='reduce timestep in given times')
parser.add_argument('-R', '--radius', type=float, default=4, metavar='<float>', help='radius of the velocity grid')
parser.add_argument('-r', '--refinement', type=float, default=2., metavar='<float>', help='ratio of maximum and minumum cell width')
parser.add_argument('-m1', '--model1', default='lbm', metavar='dvm|lbm', help='type of velocity model in the first domain')
parser.add_argument('-m2', '--model2', default='dvm', metavar='dvm|lbm', help='type of velocity model in the second domain')
parser.add_argument('-l', '--lattice', default='d3q19', metavar='d3q15|19|27|...', help='type of velocity lattice')
parser.add_argument('-i', '--limiter', default='wide-third', metavar='none|minmod|mc|superbee|...', help='type of limiter')
parser.add_argument('-c', '--correction', default='entropic', metavar='none|poly|entropic', help='type of correction for construction of discrete Maxwellian')
parser.add_argument('--exact-grad13', action='store_true', help='generate Grad13 distribution with exact moments')
parser.add_argument('-a', '--aniso-maxw', action='store_true', help='employ anisotropic form of Maxwellian (useful for anisotropic velocity grids)')
parser.add_argument('-o', '--reconstruction', default='hermite40', metavar='grad13|hermite40', help='type of reconstruction in the buffer layer')
parser.add_argument('-n', '--norm', default='L2', metavar='L1|L2|Linf', help='norm for distance between solutions')
parser.add_argument('-p', '--plot', type=int, default=10, metavar='<int>', help='plot every <int> steps')
parser.add_argument('--plot-norms', action='store_true', help='plot profiles of the norms instead')
parser.add_argument('--plot-ns', action='store_true', help='plot profiles for Navier--Stokes--Fourier equations')
parser.add_argument('--shear-factor', type=float, default=.5, metavar='<float>', help='plot <float>*shear instead of shear')
parser.add_argument('--qflow-factor', type=float, default=2, metavar='<float>', help='plot <float>*qflow instead of qflow')
parser.add_argument('--epsilon', type=float, default=1e-5, metavar='<float>', help='maximum error in test mode')
parser.add_argument('-t', '--tests', action='store_true', help='run some tests instead')
parser.add_argument('-v', '--verbose', action='store_true', help='increase output verbosity')
args = parser.parse_args()
if args.plot:
import matplotlib.pyplot as plt
log_level = logging.DEBUG if args.verbose else logging.INFO
logging.basicConfig(level=log_level, format='(%(threadName)-10s) %(message)s')
### Constants
class fixed:
D = 3 # dimension of velocity space
T_B = 1 # temperature of the plates
L = 0.5 # width of computational domain
factor_v = np.sqrt(2) # factor for tranform velocity units
# Modification of input parameters
args.width *= 2 / np.sqrt(np.pi) * args.kn
args.radius *= fixed.factor_v # from sqrt(2RT) to sqrt(RT) units
args.w_min *= fixed.factor_v
### Auxiliary constants
zeros, ones = np.zeros(fixed.D), np.ones(fixed.D)
hodge = np.zeros((3,3,3))
hodge[0, 1, 2] = hodge[1, 2, 0] = hodge[2, 0, 1] = 1
hodge[0, 2, 1] = hodge[2, 1, 0] = hodge[1, 0, 2] = 1
e_x, e_y, e_z = np.eye(fixed.D)
### Auxiliary functions (d = domain, m = model)
delta_y0 = lambda d: d.L/d.N if d.q == 1 else d.L*(1-d.q)/(1-d.q**d.N)
delta_y = lambda d: delta_y0(d) * d.q**np.arange(d.N)
cells = lambda d: d.y0 + np.cumsum(delta_y(d) + np.roll(np.append(delta_y(d)[:-1], 0), 1))/2
half_M = lambda m: -np.sum(m.xi[...,1] * m.Maxw(Macro(vel=args.U*e_x/2, temp=fixed.T_B)) * (m.xi[...,1] < 0))
_to_arr = lambda vel: np.atleast_2d(vel)
to_arr = lambda macro: macro if hasattr(macro.rho, '__len__') else Macro(*[ np.array([m]) for m in macro._asdict().values() ])
_from_arr = lambda vel: slice(None) if len(vel.shape) > 1 else 0
from_arr = lambda macro: slice(None) if hasattr(macro.rho, '__len__') else 0
multicell_adapter = lambda func, macro: func(to_arr(macro))[from_arr(macro)]
idx2slice = lambda idx: np.s_[:,ord(idx) - ord('x')]
def poly_correction(xi_moments, c_moments, delta, xi):
m0, m1_i, m2, m2_ij, m3_i = xi_moments
M2, M3_i, M4 = c_moments
_ = lambda v: v.reshape((-1,1))
__ = lambda v: v.reshape((-1,fixed.D,1))
A = np.hstack((
np.hstack(( _(m0), m1_i, _(m2) )).reshape((-1,1,2+fixed.D)),
np.dstack(( __(m1_i), m2_ij, __(m3_i) )),
np.hstack(( _(M2), M3_i, _(M4) )).reshape((-1,1,2+fixed.D))
))
alpha = np.linalg.solve(A, delta)
sqr_xi = np.einsum('il,il->i', xi, xi)
psi = np.hstack(( _(np.ones_like(sqr_xi)), xi, _(sqr_xi) ))
return np.einsum('al,il->ai', alpha, psi)
def poly_correct_moments(model, F, mask, delta):
M0, M1_i, M2 = delta
m0, m1_i, m2, m2_ij, m3_i, m4 = calc_first_moments0(model, F, mask, all=True)
_ = lambda v: v.reshape((-1,1))
return poly_correction(
(m0, m1_i, m2, m2_ij, m3_i),
(m2, m3_i, m4),
np.hstack(( _(M0), M1_i, _(M2) )),
model.xi[mask,:]
)[_from_arr(F)]
def poly_correct_vdf(F, macro, xi):
# see Aristov, Tcheremissine 1980
f, macro = _to_arr(F), to_arr(macro)
m0, m1_i, m2, m2_ij, m3_i, _ = calc_first_moments0(None, f, all=True, xi=xi)
sqr_xi = np.einsum('il,il->i', xi, xi)
c = np.einsum('il,a->ail', xi, np.ones_like(macro.rho)) - np.einsum('i,al->ail', np.ones_like(sqr_xi), macro.vel)
cc = np.einsum('ail,ail->ai', c, c)
M2 = np.einsum('ai,ai->a', f, cc)
M3_i = np.einsum('ai,ai,il->al', f, cc, xi)
M4 = np.einsum('ai,ai,i->a', f, cc, sqr_xi)
_ = lambda v: v.reshape((-1,1))
exact = np.einsum('a,al->al', macro.rho, np.hstack((
_(np.ones_like(macro.rho)), macro.vel, fixed.D*_(macro.temp)/2
)))
real = np.hstack(( _(m0), m1_i, _(M2) ))
return (f * (1 + poly_correction(
(m0, m1_i, m2, m2_ij, m3_i), (M2, M3_i, M4),
exact - real, xi
)))[_from_arr(F)]
vgrid_params = {
'polynomial': { 'w_min': args.w_min, 'p': args.poly },
'geometric': { 'q': args.ratio },
}
# 1d packing, symm=1 for antisymmetry, symm=-1 for specular reflection
def dvm_ball(symm, xi, sqr_xi):
xi_y = xi[...,1]
p = np.where((xi_y > 0)*(sqr_xi <= args.radius**2))
n = np.where((xi_y < 0)*(sqr_xi <= args.radius**2))
return np.hstack((n[0], p[0][::symm])), np.hstack((n[1], p[1])), np.hstack((n[2], p[2]))
### DVM velocity grid
def dvm_grid():
ygrid = getattr(vgrid, args.grid.capitalize())(args.radius, args.M*args.My, **vgrid_params.get(args.grid, {}))
grid = getattr(vgrid, 'Hermite')(args.radius, args.M)
_Xi = lambda a: ygrid.x if a==1 else grid.x
_W = lambda a: ygrid.w if a==1 else grid.w
_I = lambda a: np.ones(_W(a).size)
_G = lambda a: np.roll((_Xi(a), _I(a), _I(a)), a, axis=0)
_xi = np.einsum('li,lj,lk->ijkl', _G(0), _G(1), _G(2))
_sqr_xi = np.einsum('ijkl,ijkl->ijk', _xi, _xi)
_shape = _sqr_xi.shape
_ball = dvm_ball(1, _xi, _sqr_xi)
_xi, _sqr_xi = _xi[_ball], _sqr_xi[_ball]
_w = np.einsum('i,j,k->ijk', _W(0), _W(1), _W(2))[_ball]
c = lambda v: np.einsum('il,al->ail', _xi, np.ones_like(v)) - np.einsum('al,i', v, np.ones_like(_sqr_xi))
cc = lambda v: np.einsum('ail->ai', c(v)**2)
_c = lambda v: np.einsum('il,l->il', _xi, np.ones(fixed.D)) - np.einsum('l,i', v, np.ones_like(_sqr_xi))
_cc = lambda v: np.einsum('il->i', _c(v)**2)
_ones, _vzeros = np.ones_like(_sqr_xi), np.ones_like(_xi)
_ = lambda v: v.reshape(v.shape + (-1,))
maxw5 = lambda m: m[0] * (2*np.pi*m[4])**(-fixed.D/2) * _w * np.exp(-_cc(m[1:4]) / 2 / m[4])
maxw7 = lambda m: m[0] * np.prod(2*np.pi*m[4:7])**-.5 * _w * \
np.exp(-np.einsum('il,l', _c(m[1:4])**2, .5/m[4:7]))
macro_ = { maxw5: lambda m: Macro(
m[0], m[1:4], m[4], m[5:8], m[8:11]
), maxw7: lambda m: Macro(
m[0], m[1:4], np.sum(m[4:7])/fixed.D, m[7:10], m[10:13]
)}
g_tau = lambda M: np.einsum('il,im,n,lmn->i', _c(M.vel), _c(M.vel), M.tau/2, hodge)
qc = lambda M: np.einsum('l,il', M.qflow, _c(M.vel))
cc_5T = lambda M: _cc(M.vel) / M.temp / (fixed.D+2)
qccc_5T = lambda M: qc(M) * cc_5T(M)
g_qflow = lambda M: qc(M) * (cc_5T(M) - 1)
grad13 = lambda m, equil, M: equil(m) * (1 + (g_tau(M(m)) + g_qflow(M(m)))
/ M(m).rho / M(m).temp**2)
maxw5_jac = lambda m: np.hstack((
_(_ones) / m[0],
_c(m[1:4]) / m[4],
_(_cc(m[1:4]) / m[4] - fixed.D) / 2 / m[4]
))
maxw7_jac = lambda m: np.hstack((
_(_ones) / m[0],
_c(m[1:4]) / m[4:7],
(_c(m[1:4])**2 / m[4:7] - 1) / 2 / m[4:7]
))
def vdf_with_exact_moments(macro, use_NSF_moments=False, build_Maxwell=False):
xi_ = c(np.zeros_like(macro.vel))
c_ = c(macro.vel)
cc_ = np.einsum('ail,ail->ai', c_, c_)
cc_i_ = np.einsum('ail,ail->ail', c_, c_)
ccc_i_ = np.einsum('ai,ail->ail', cc_, c_)
cc_ij_ = np.einsum('ail,aim->ailm', c_, c_)
cc_hodge_i_ = np.einsum('ailm,lmn', cc_ij_, hodge) # summation with hodge gives double quantity
ones_ = np.ones_like(cc_)
zz = np.zeros_like(macro.vel)
if args.aniso_maxw:
# Use 5 moments to construct Maxwellian (enough for conservative DVM)
psi = np.dstack(( _(ones_), xi_, _(cc_) ))
moments = np.einsum('a,al->al', macro.rho, np.hstack((
_(np.ones_like(macro.rho)), macro.vel, _(fixed.D*macro.temp)
)))
mm = np.hstack(( _(macro.rho), macro.vel, _(macro.temp) ))
vdf, vdf_jac = maxw5, lambda m: np.einsum('i,il->il', maxw5(m), maxw5_jac(m))
equil, equil_jac = maxw5, maxw5_jac
else:
# Use 7 moments to ensure T_i = T/D (conservative hybrid as well for anisotropic grids)
psi = np.dstack(( _(ones_), xi_, cc_i_ ))
moments = np.einsum('a,al->al', macro.rho, np.hstack((
_(np.ones_like(macro.rho)), macro.vel, np.einsum('a,l', macro.temp, ones)
)))
mm = np.hstack(( _(macro.rho), macro.vel, np.einsum('a,l', macro.temp, ones) ))
vdf, vdf_jac = maxw7, lambda m: np.einsum('i,il->il', maxw7(m), maxw7_jac(m))
equil, equil_jac = maxw7, maxw7_jac
if use_NSF_moments:
# Use 6 additional moments for reproducing Navier--Stokes--Fourier equations
if macro.vel.shape != macro.tau.shape or build_Maxwell:
macro = Macro(macro.rho, macro.vel, macro.temp, zz, zz)
psi = np.dstack(( psi, cc_hodge_i_, ccc_i_ ))
moments = np.hstack(( moments, 2*macro.tau, 2*macro.qflow )) # hodge gives 2*tau
mm = np.hstack(( mm, macro.tau, macro.qflow ))
M = macro_[equil]
vdf = lambda m: grad13(m, equil, M)
dtemp = lambda m: -(2*g_tau(M(m)) + 2*g_qflow(M(m)) + qccc_5T(M(m))) / M(m).temp
vdf_jac = lambda m: np.einsum('i,il->il', vdf(m), np.hstack((
equil_jac(m), _vzeros, _vzeros
))) + np.einsum('i,il->il', equil(m), np.hstack((
-_(g_tau(M(m)) + g_qflow(M(m))) / M(m).rho,
(
- np.einsum('im,n,lmn->il', _c(M(m).vel), M(m).tau, hodge)
- np.einsum('l,i', M(m).qflow, cc_5T(M(m)) - 1)
- 2 * np.einsum('i,il->il', qc(M(m)), _c(M(m).vel)) / M(m).temp / (fixed.D+2)
),
_( dtemp(m) ) if equil == maxw5 else np.einsum('i,l', dtemp(m) / M(m).temp, m[4:7] / fixed.D),
np.einsum('im,in,lmn->il', _c(M(m).vel), _c(M(m).vel), hodge) / 2,
np.einsum('il,i->il', _c(M(m).vel), cc_5T(M(m)) - 1)
)) / M(m).rho / M(m).temp**2)
result = np.empty_like(cc_)
for k in range(macro.rho.size):
sol = optimize.root(
fun = lambda m, psi, moments: np.einsum('il,i', psi, vdf(m)) - moments,
jac = lambda m, psi, _: np.einsum('il,im', psi, vdf_jac(m)),
x0 = mm[k], args=(psi[k], moments[k])
)
mm[k] = sol.x
result[k] = vdf(mm[k])
#print(' --- my_diag', np.diag(np.linalg.qr(np.einsum('il,im', psi[k], vdf_jac(mm[k])))[0]))
#print(' --- exact_diag', np.diag(sol.fjac))
#print(sol)
return result
Maxw = lambda m: np.einsum('a,i,ai->ai', m.rho*(2*np.pi*m.temp)**(-fixed.D/2), _w,
np.exp(np.einsum('ai,a->ai', -cc(m.vel), .5/m.temp)))
G_tau = lambda m: np.einsum('ail,aim,an,lmn,a->ai', c(m.vel), c(m.vel), m.tau, hodge, .5/m.rho/m.temp**2)
G_qflow = lambda m: np.einsum('ail,al,ai,a->ai', c(m.vel), m.qflow,
np.einsum('ai,a->ai', cc(m.vel), 1/m.temp/(fixed.D+2)) - 1, 1/m.rho/m.temp**2)
Grad13 = lambda m: Maxw(m) * (1 + G_tau(m) + G_qflow(m))
create_vdf = lambda creator, macro, method=args.correction: multicell_adapter({
'none': creator,
'poly': lambda m: poly_correct_vdf(creator(m), m, _xi),
'entropic': lambda m: vdf_with_exact_moments(m,
build_Maxwell = (creator == Maxw),
use_NSF_moments = (creator == Grad13)
)
}[method], macro)
grad13_method = 'entropic' if args.exact_grad13 else args.correction
return Model(
info = 'DVM: ({}x{}x{})'.format(*_shape),
weights = _w, xi = _xi,
c = lambda vel: c(_to_arr(vel))[_from_arr(vel)],
Maxw = lambda macro: create_vdf(Maxw, macro),
Grad13 = lambda macro: create_vdf(Grad13, macro, grad13_method),
)
### LBM velocity grid
def lbm_d3(order, stretch, nodes, weights, full=True):
lattice = []
def sort(item):
return 10*np.sum(item[0]) + np.sum(item[0]/10**np.arange(fixed.D))
def add_symm(i, node, lattice):
if i < fixed.D:
s = np.ones(fixed.D); s[i] *= -1
if node[i]:
add_symm(i+1, node, lattice)
add_symm(i+1, s*node, lattice)
else:
add_symm(i+1, node, lattice)
else:
lattice += [ (node, weights[0]) ]
def add_cycle(node, lattice):
_node = np.array(node)
while True:
add_symm(0, _node*stretch, lattice)
_node = np.roll(_node, 1)
if (_node == node).all():
break
for node in nodes:
add_cycle(node, lattice)
if len(set(node)) == fixed.D and full:
add_cycle(node[::-1], lattice)
weights = np.roll(weights, -1)
xi, w = np.transpose(sorted(lattice, key=sort))
return Lattice(np.vstack(xi), np.hstack(w), order)
def lbm_grid():
_xi, _w, order = lattices[args.lattice].xi, lattices[args.lattice].w, lattices[args.lattice].order
xi_v = lambda v: np.einsum('il,al', _xi, v)
sqr_xi = np.einsum('il,il->i', _xi, _xi)
sqr = lambda v: np.einsum('al,al,i->ai', v, v, np.ones_like(_w))
weighted = lambda f: np.einsum('i,ai->ai', _w, f)
weighted_rho = lambda m, f: np.einsum('a,i,ai->ai', m.rho, _w, f)
c = lambda v: np.einsum('il,a', _xi, np.ones(v.shape[0])) - np.einsum('i,al', np.ones_like(_w), v)
Tn = lambda n: 1./np.math.factorial(n) * np.heaviside(order-2*n, 1)
T1 = lambda m: xi_v(m.vel) * Tn(1)
T2 = lambda m: ( (xi_v(m.vel))**2 - sqr(m.vel) + np.einsum('a,i', m.temp-1, sqr_xi-fixed.D) ) * Tn(2)
T3 = lambda m: xi_v(m.vel)*( xi_v(m.vel)**2 - 3*sqr(m.vel) + 3*np.einsum('a,i', m.temp-1, sqr_xi-fixed.D-2) ) * Tn(3)
Maxw = lambda m: weighted_rho(m, 1 + T1(m) + T2(m) + T3(m))
G2 = lambda m: np.einsum('il,im,an,lmn->ai', _xi, _xi, m.tau, hodge) * Tn(2)
G3 = lambda m: xi_v(m.qflow) * (sqr_xi/(fixed.D+2)-1) + G2(m)*xi_v(m.vel) \
- np.einsum('il,am,an,lmn->ai', _xi, m.vel, m.tau, hodge)
Grad13 = lambda m: Maxw(m) + weighted(G2(m) + G3(m))
return Model(
info = 'LBM: %s' % args.lattice,
weights = _w, xi = _xi,
c = lambda vel=zeros: c(_to_arr(vel))[_from_arr(vel)],
Maxw = lambda macro: multicell_adapter(Maxw, macro),
Grad13 = lambda macro: multicell_adapter(Grad13, macro)
)
def splot(model, f):
import mpl_toolkits.mplot3d.axes3d as p3
fig = plt.figure()
ax = p3.Axes3D(fig)
xi = model.xi
m = ( xi[:,2] <= (model.weights0[0])**(1./3)/2 ) * ( xi[:,2] >= 0 )
#ax.scatter(xi[:,0][m], xi[:,1][m], (f/model.weights0())[m])
ax.scatter(xi[:,0][m], xi[:,1][m], (f/model.Maxw(Macro()))[m])
plt.show()
def plot_profiles(solution):
plt.clf()
y, h, m = calc_macro(solution)
U = args.U
plt.title(domains[0].model.info, loc='left')
plt.title(domains[1].model.info, loc='right')
plt.title('k = %g, U = %g' % (args.kn, args.U))
plt.axvline(x=domains[1].y0, color='k')
if args.plot_norms:
for name in norms.keys():
y, norm = calc_norm(solution, name)
plt.plot(y, norm, '*-', label=name)
plt.plot(y, -m.qflow[:,0], 'b*-', label='heat flow')
plt.semilogy()
plt.legend()
else:
try:
Y, Vel, Tau = np.loadtxt('k%g.txt' % args.kn).T
plt.plot(Y, Vel, 'rD', Y, -2 * args.shear_factor * Tau / fixed.factor_v / args.kn, 'gD')
Y, Vel, Tau, Qflow = np.loadtxt('k%g-my.txt' % args.kn).T
plt.plot(Y, Vel, 'r--', Y, args.shear_factor * Tau / fixed.factor_v / args.kn, 'g--',
Y, args.qflow_factor * Qflow / args.kn, 'b--')
except IOError:
if args.verbose:
print("Exact solution is absent", file=sys.stderr)
plt.plot(y, m.vel[:,0] / U, 'r*-', label='velocity/U')
plt.plot(y, -args.shear_factor * m.tau[:,2] / U / args.kn, 'g*-',
label='%g*share stress/U/k' % args.shear_factor)
plt.plot(y, -args.qflow_factor * m.qflow[:,0] / U / args.kn, 'b*-',
label='%g*qflow_x/U/k' % args.qflow_factor)
plt.plot(y, (m.temp - 1) / U**2, 'y', label='(temp-1)/U^2')
plt.plot(y, m.qflow[:,1] / U**2 / args.kn, 'c', label='qflow_y/U^2/k')
y, norm = calc_norm(solution, args.norm)
factor = -int(args.qflow_factor * m.qflow[-1,0] / U / norm[-1])
plt.plot(y, norm * factor, 'k*-', label='%g*%s' % (factor, args.norm))
if args.plot_ns:
plt.plot(Y, Y, 'r:')
plt.plot(Y, args.kn+Y*0, 'g:')
plt.plot(Y, .1-.4*Y**2, 'y:')
plt.plot(Y, .8*Y, 'c:')
legend = plt.legend(loc='upper center')
plt.xlim(0, .5)
plt.grid()
plt.show()
plt.pause(1e-3)
def calc_macro0(model, F):
f = _to_arr(F)
#TODO: optimize using generators
rho = np.einsum('ai->a', f)
vel = np.einsum('ai,il,a->al', f, model.xi, 1./rho)
c = model.c(vel)
cc = np.einsum('ail,ail->ai', c, c)
ccc_i = np.einsum('ai,ail->ail', cc, c)
cc_ij = np.einsum('ail,aim->ailm', c, c)
cc_hodge_i = np.einsum('ailm,lmn', cc_ij, hodge) # summation with hodge gives 2
temp = np.einsum('ai,ai,a->a', f, cc, 1 / rho / fixed.D)
qflow = np.einsum('ai,ail->al', f, ccc_i) / 2
tau = np.einsum('ai,ail->al', f, cc_hodge_i) / 2
return Macro(*[ m[_from_arr(F)] for m in (rho, vel, temp, tau, qflow) ])
def calc_first_moments0(model, F, mask=slice(None), all=False, xi=None):
f = _to_arr(F)[:,mask]
if xi is None:
xi = model.xi[mask,:]
sqr_xi = np.einsum('il,il->i', xi, xi)
m0 = np.einsum('ai->a', f)
m1_i = np.einsum('ai,il->al', f, xi)
m2 = np.einsum('ai,i->a', f, sqr_xi)
if not all:
return m0, m1_i, m2
m2_ij = np.einsum('ai,il,im->alm', f, xi, xi)
m3_i = np.einsum('ai,i,il->al', f, sqr_xi, xi)
m4 = np.einsum('ai,i,i->a', f, sqr_xi, sqr_xi)
return m0, m1_i, m2, m2_ij, m3_i, m4
def hermite_polynomials(model):
xi, I = model.xi, np.eye(fixed.D)
h0 = np.ones_like(xi[:,0])
h1 = xi
h2 = (np.einsum('il,im->ilm', xi, xi) - np.einsum('i,lm', h0, I))
h3 = (np.einsum('il,im,in->ilmn', xi, xi, xi) - np.einsum('il,mn', xi, I)
- np.einsum('im,ln', xi, I) - np.einsum('in,lm', xi, I))
return h0, h1, h2, h3
def print_hermite0(model, f):
H = hermite_polynomials(model)
Idx = [ '', 'l', 'lm', 'lmn' ]
for n, (h, idx) in enumerate(zip(H, Idx)):
a = np.einsum('ai,i{0}'.format(idx), _to_arr(f), h)
print(' -- a_' + idx); print(a)
def hermite_reconstruct(old_model, new_model, f):
macro = calc_macro0(old_model, f)
f = _to_arr(f)
H_old = hermite_polynomials(old_model)
H_new = hermite_polynomials(new_model)
Idx = [ '', 'l', 'lm', 'lmn' ]
C = lambda n: 1/np.math.factorial(n)
result = np.zeros((f.shape[0], H_new[0].size))
for n, (h_old, h_new, idx) in enumerate(zip(H_old, H_new, Idx)):
a = np.einsum('ai,i{0}'.format(idx), f, h_old)
result += np.einsum('a{0},i{0}'.format(idx), a, h_new) * C(n)
return np.einsum('i,ai->ai', new_model.Maxw(Macro()), result)[from_arr(macro)]
def reconstruct(old_model, new_model, f):
return {
'grad13': lambda: new_model.Grad13(calc_macro0(old_model, f)),
'hermite40': lambda: hermite_reconstruct(old_model, new_model, f),
}[args.reconstruction]()
def calc_macro(solution):
y, h, rho, vel, temp, tau, qflow = [], [], [], [], [], [], []
for d, s in zip(domains, solution):
y += [ cells(d) ]
h += [ delta_y(d) ]
for m, m0 in zip((rho, vel, temp, tau, qflow), calc_macro0(d.model, s.f)._asdict().values()):
m.append(m0)
s = lambda m: np.hstack(m)
v = lambda m: np.vstack(m)
return s(y), s(h), Macro(s(rho), v(vel), s(temp), v(tau), v(qflow))
def calc_norm(solution, norm):
y, result = [], []
for d, s in zip(domains, solution):
y += [ cells(d) ]
macro = calc_macro0(d.model, s.f)
maxw, grad13 = d.model.Maxw(macro), d.model.Grad13(macro)
result += [ norms[norm](s.f, grad13)/norms[norm](s.f, 0) ]
s = lambda m: np.hstack(m)
return s(y), s(result)
def print_total_values(solution):
y, h, macro = calc_macro(solution)
print('Total mass =', 2*sum(h*macro.rho))
print('Total half momentum =', np.einsum('a,al', h*macro.rho, macro.vel))
print('Total energy =', 2*sum(h*macro.rho*(fixed.D*macro.temp/2 + np.einsum('al,al->a', macro.vel, macro.vel))))
def print_error(solution):
y, h, macro = calc_macro(solution)
err = lambda f, g: np.sqrt(np.sum((h*(f-g))**2))
try:
Y, Vel, Tau, Qflow = np.loadtxt('k%g-my.txt' % args.kn).T
plt.plot(Y, Vel, 'r--', Y, args.shear_factor * Tau * fixed.factor_v / args.kn / 2, 'g--',
Y, args.qflow_factor * Qflow / args.kn, 'b--')
quantities = [ 'vel', 'tau', 'qflow' ]
indices = [ 'x', 'z', 'x' ]
factors_real = np.array([ args.kn, -1, -1 ]) / args.U / args.kn
factors_exact = np.array([ args.kn, 1 / fixed.factor_v, 1]) / args.kn
errors = {}
for quantity, idx, factor_real, factor_exact in zip(quantities, indices, factors_real, factors_exact):
q = macro._asdict()[quantity][idx2slice(idx)] * factor_real
Q = eval(quantity.title()) * factor_exact
f = interpolate.interp1d(Y, Q, kind='cubic')
errors[f'{quantity}_{idx}'] = err(f(y), q)
print(f'Errors in L2 ({",".join(errors.keys())}) = {" ".join([ "{:.2e}".format(v) for v in errors.values()])}')
except IOError:
if args.verbose:
print("Exact solution is absent", file=sys.stderr)
def print_result(solution):
y, h, m = calc_macro(solution)
if args.plot_norms:
names = list(norms.keys())
result = [ calc_norm(solution, name)[1] for name in norms.keys() ]
else:
names = [ 'vel_x', 'p_xy', 'q_x' ]
result = [ m.vel[:,0], m.tau[:,2], m.qflow[:,0] ]
np.savetxt(sys.stdout, np.transpose([y] + result), fmt='%1.5e',
header='%11s'*(len(names) + 1) % tuple(['y'] + names))
def check(f, flux=False):
if np.sum(np.isnan(f)) > 0:
logging.error('NaN:')
print(f)
raise NameError("NaN has been found!")
if np.sum(f<0) > 0 and not flux:
logging.error('Negative:')
print(np.argwhere(f<0))
print(f[f<0])
raise NameError("Negative value has been found!")
# Second-order TVD scheme
def transport(domain, bc, solution, delta_t):
np.seterr(all='raise') # for all transport threads
logging.debug('Starting transfer')
N, xi_y, _xi_y = domain.N, domain.model.c(np.zeros((domain.N, fixed.D)))[...,1], domain.model.xi[...,1]
gamma, h = _xi_y * delta_t, delta_y(domain)
mask, _mask = lambda sgn, N: sgn*xi_y[0:N] > 0, lambda sgn: sgn*_xi_y > 0
def calc_F(h, f, idx, F, Idx, mask, low_order=False):
logging.debug(' - calc_F')
g = np.einsum('i,a', np.abs(gamma), 1/h[idx])
d1, d2 = f[idx+1] - f[idx], f[idx] - f[idx-1]
h1, h2 = (h[idx+1] + h[idx])/2, (h[idx] + h[idx-1])/2
D = lambda d, h: np.einsum('ai,a->ai', np.abs(d), 1/h)[mask]
DD = lambda d, h, C: np.einsum('ai,a,ai->ai', np.abs(d), 1/h, C)[mask]
H = np.einsum('a,ai->ai', h[idx], np.sign(d1))[mask]
small = np.finfo(float).eps
lim = {
'none': lambda: 0,
'lax-wendroff': lambda: D(d1, h1),
'beam-warming': lambda: D(d2, h2),
'fromm': lambda: D(d1+d2, h1+h2),
'minmod': lambda: np.minimum(D(d1, h1), D(d2, h2)),
'mc': lambda: np.minimum(D(d1+d2, h1+h2), 2*np.minimum(D(d1, h1), D(d2, h2))),
'wide-third': lambda: np.minimum((DD(d1, h1, 2-g) + DD(d2, h2, 1+g))/3,
np.minimum(DD(d1, h1, 2/(1-g)), DD(d2, h2, 2/(g + small)))),
'superbee': lambda: np.maximum(np.minimum(2*D(d1, h1), D(d2, h2)), np.minimum(D(d1, h1), 2*D(d2, h2)))
}[args.limiter]() * (0 if low_order else 1)
F[Idx][mask] = f[idx][mask] + (1-g[mask])*H/2 * np.where(d1[mask]*d2[mask] > 0, lim, 0)
def calc2N(h, f, F, sgn, bc):
logging.debug(' - calc2N %+d', sgn)
m0, m1, m2, mN = _mask(sgn), mask(sgn, 1), mask(sgn, 2), mask(sgn, N-2)
f3[:2], h3[:2] = f[-2:], h[-2:]
h3[2] = bc.last_cell(h3, f3, m0)
calc_F(h3, f3, np.array([1]), F, slice(-1, None), m1) # last flux
bc.last_flux_is_calculated()
calc_F(h, f, np.arange(1, N-1), F, slice(2, -1), mN) # interior fluxes
check(F[2:][mask(sgn, N-1)], flux=True) # after calc2N
def calc01(h, f, F, sgn, bc):
logging.debug(' - calc01 %+d', sgn)
m0, m1, m2 = _mask(sgn), mask(sgn, 1), mask(sgn, 2)
bc.first_flux(h[0], f[0], F, m0, calc_F) # first flux
f3[1:], h3[1:] = f[:2], h[:2]
h3[0] = bc.first_cell(h3, f3, F[0], np.abs(gamma)/h[0], m0)
calc_F(h3, f3, np.array([1]), F, slice(1, 2), m1) # second flux
check(F[:2][m2], flux=True) # after calc01
f, F, f3, h3 = solution.f, solution.F, solution.f3, np.empty(3)
#F.fill(np.NaN); f3.fill(np.NaN); # for debug
calc2N(h, f, F, 1, bc[1])
calc2N(h[::-1], f[::-1], F[::-1], -1, bc[0])
calc01(h, f, F, 1, bc[0])
calc01(h[::-1], f[::-1], F[::-1], -1, bc[1])
check(f3, flux=True)
check(F, flux=True)
for b in bc:
b.all_fluxes_are_calculated()
for b in bc:
b.wait_for_update()
for n, b in enumerate(bc):
b.correct_first_flux(_xi_y, F[-n], _mask(1-2*n))
f -= np.einsum('i,a,ai->ai', gamma, 1/h, F[1:] - F[:-1])
check(f) # after transport
def bgk(domain, bc, solution, delta_t):
logging.debug('Starting BGK')
macro = calc_macro0(domain.model, solution.f)
nu = lambda macro: macro.rho * np.sqrt(2*macro.temp) / args.kn
M = domain.model.Maxw(macro)
solution.f[:] = np.einsum('ai,a->ai', solution.f - M, np.exp(-delta_t*nu(macro))) + M
check(solution.f) # after BGK
# Boundary conditions
class Boundary(object):
def __init__(self, n):
pass
def __call__(self, F0, mask): # boundary condition, F0 = f{1/2}
pass
def _new_f3(self, h, f):
return np.tile(f, (3,1)), np.tile(h, 3)
def last_flux_is_calculated(self):
pass
def correct_first_flux(self, xi_y, F, mask):
pass
def all_fluxes_are_calculated(self):
pass
def wait_for_update(self):
pass
def connect(self, solution):
pass
def last_cell(self, h3, f3, mask): # last ghost cell, f3 = f{M-1, M, ghost}
f3[2][mask] = (2*f3[1] - f3[0])[mask] # extrapolation by default
return h3[0]
def first_flux(self, h1, f1, F, mask, calc_F): # inflow flux, f1 = f{1}
F[0][mask] = self(F[0], mask)
def first_cell(self, h3, f3, F0, gamma1, mask): # first ghost cell, f3 = f{ghost, 1, 2}
f3[0][mask] = self(f3[1], mask)
return h3[1]
class Symmetry(Boundary):
def __call__(self, F0, mask):
return F0[::-1][mask]
def last_cell(self, h3, f3, mask):
f3[2][mask] = self(f3[1], mask)
return h3[1]
class Diffuse(Boundary):
def __init__(self, n):
self._model = domains[n].model
self._xi_y = self._model.xi[...,1]
self._half_M = half_M(self._model)
def __call__(self, F0, mask):
rho = np.sum(self._xi_y[::-1][mask] * F0[::-1][mask]) / self._half_M
return self._model.Maxw(Macro(rho, args.U*e_x/2, fixed.T_B))[mask]
def first_cell(self, h3, f3, F0, gamma1, mask):
f3[0][mask] = ((2*F0 - (1-gamma1)*f3[1])/(1+gamma1))[mask]
return h3[1]
class Couple(Boundary):
def __init__(self, n, n_partner, idx_partner):
self._n = n
self._n_partner = n_partner
self._idx_partner = idx_partner
self._lock_F = threading.Event()
self._lock_f = threading.Event()
self._mirror = 1 + 2*self._idx_partner # -1 or 1
self._reconstructed_h = delta_y(domains[self._n_partner])[::-self._mirror][-2:]
self._is_reconstructed = False
self._model = domains[self._n].model
self._model_partner = domains[self._n_partner].model
def _partner_cell(self, f, mask):
if self._model == self._model_partner:
f_partner = self._f_partner[self._idx_partner]
f[mask] = f_partner[mask]
else:
f[mask] = self._reconstruct_partner_f()[1][mask]
return delta_y(domains[self._n_partner])[self._idx_partner]
def _reconstruct_partner_f(self):
if not self._is_reconstructed:
self._reconstructed_f = \
reconstruct(self._model_partner, self._model, self._f_partner[::-self._mirror][-2:])
self._is_reconstructed = True
return self._reconstructed_f
def connect(self, solution):
self._f_partner = solution[self._n_partner].f
self._F_partner = solution[self._n_partner].F
def first_flux(self, h1, f1, F, mask, calc_F):
self._lock_F.wait()
self._lock_F.clear()
if self._model == self._model_partner:
# take the prepared flux from the partner
F[0][mask] = self._F_partner[self._idx_partner][mask]
else:
# reconstruct a flux from the partner distribution function (2 cells)
f3, h3 = self._new_f3(h1, f1)
f3[:2] = self._reconstruct_partner_f()
h3[:2] = self._reconstructed_h
calc_F(h3, f3, np.array([1]), F, slice(1), np.array([mask]))
def first_cell(self, h3, f3, F0, gamma1, mask):
return self._partner_cell(f3[0], mask)
def last_cell(self, h3, f3, mask):
return self._partner_cell(f3[2], mask)
def correct_first_flux(self, xi_y, F, mask):
if self._model != self._model_partner:
# conservative correction of the reconstructed flux
if self._idx_partner: # correct inflow flux of right domain only
xi_y_partner = self._model_partner.xi[...,1]
m0, m1_i, m2 = calc_first_moments0(self._model_partner, xi_y_partner*self._F_partner[self._idx_partner])
M0, M1_i, M2 = calc_first_moments0(self._model, xi_y*F)
logging.debug('Couple BC correction: mass %.2e, momentum (%.2e,%.2e,%.2e), energy %.2e'
% tuple(np.hstack((m0-M0, (m1_i-M1_i)[0], m2-M2))))
F[mask] *= 1 + poly_correct_moments(self._model, xi_y*F, mask, (m0-M0, m1_i-M1_i, m2-M2))
def last_flux_is_calculated(self):
bcs[self._n_partner][self._idx_partner]._lock_F.set()
def all_fluxes_are_calculated(self):
bcs[self._n_partner][self._idx_partner]._lock_f.set()
def wait_for_update(self):
self._lock_f.wait()
self._lock_f.clear()
self._is_reconstructed = False
def create_bcs():
bcs = []
for n, boundary in enumerate(boundaries):
# for each domain
bc = []
for p in boundary:
# for each boundary of domain
constructor, kwargs = p
kwargs['n'] = n
bc.append(constructor(**kwargs))
bcs.append(bc)
return bcs
def new_solution(initial):
solution = [ Solution(d, initial) for d in domains ]
for bc in bcs:
for b in bc:
b.connect(solution)
return solution
def run_threads(solution, operator, delta_t):
threads = []
for d, s, b in zip(domains, solution, bcs):
thread = threading.Thread(target=operator, args=(d, b, s, delta_t),
name='%s for domain: y0=%.2f, N=%d' % (operator.__name__, d.y0, d.N))
thread.start()
threads.append(thread)
for t in threads:
t.join() # wait until all threads terminate
def solve_bgk():
U, U0 = args.U, .9*args.U if args.kn < 1 else 0
solution = new_solution(lambda y: (1+0*y, U0*np.einsum('a,l', y, e_x), 1+0*y))
y, h, m0 = calc_macro(solution)
delta_t = min(h)/args.radius/args.step
print_total_values(solution)
if args.plot:
plt.ion()
plot_profiles(solution)
for i in range(args.end):
# Symmetry second-order splitting
run_threads(solution, transport, delta_t)
run_threads(solution, bgk, 2*delta_t)
run_threads(solution, transport, delta_t)
[ check(s.f) for s in solution ] # to stop iteration process in case of negative values
if args.plot and not i % args.plot:
y, h, m = calc_macro(solution)
rho_disp, pxy_mean = sum(h*(m.rho-m0.rho)**2), np.sum(h*m.tau[:,2])
pxy_disp = sum(h*(m.tau[:,2]-pxy_mean)**2)
print('%d: err(rho) = %g, p_xy/U = %g, err(p_xy)/U = %g, vel_x[-1]/U = %g, qflow_x[-1]/U = %g'
% ( i, rho_disp, pxy_mean/U, pxy_disp/U, m.vel[-1,0]/U, m.qflow[-1,0]/U ))
plot_profiles(solution)
print_total_values(solution)
print_error(solution)
print_result(solution)
#splot(domains[-1].model, solution[-1].f[-1])
#splot(domains[0].model, solution[0].f[0])
if args.plot:
plt.ioff(); plt.show()
def check_model(name, w, xi):
m0 = np.sum(w)
m1_i = np.einsum('i,il', w, xi)
m2 = np.einsum('i,il->', w, xi**2) / fixed.D
print('First 5 moments of %6s:' % name, m0, m1_i, m2)
return np.allclose(np.hstack((m0, m1_i, m2)), np.hstack((1, zeros, 1)))
def tests():
fmt_float, fmt_str = '%+.2e', '%9s'
dev2str = lambda x: fmt_str % '0' if np.fabs(x) < 1e1*np.finfo(float).eps else fmt_float % x
def is_almost_equal(a, b):
if args.epsilon:
assert np.sum(np.abs(a-b)) < args.epsilon
def print_sample(m, m0):
s = lambda name: m._asdict()[name] - m0._asdict()[name]
v = lambda name, idx: m._asdict()[name][idx] - m0._asdict()[name][idx]
columns = ( 'rho', 'temp', 'vel_x', 'vel_y', 'p_xy', 'q_x', 'q_y' )
values = ( s('rho'), s('temp'), v('vel', 0), v('vel', 1), v('tau', 2), v('qflow', 0), v('qflow', 1) )
print('Variable: ', ''.join([fmt_str + ' ' for i in range(len(columns))]) % columns)
print('Deviation:', ''.join([fmt_str + ' ' for i in range(len(values))]) % tuple(map(dev2str, values)))
def check_macro(model, f, expected):
computed = calc_macro0(model, f)
print_sample(computed, expected)
for m, m0 in zip(computed._asdict().values(), expected._asdict().values()):
is_almost_equal(m, m0)
o = lambda y: np.ones_like(y)
delta = args.U/2
if args.verbose:
# Check all quadratures
m = models['dvm']
sqr_xi = np.einsum('il->i', m.xi**2)
check_model('DVM', m.weights/(2*np.pi)**(fixed.D/2) * np.exp(-sqr_xi/2), m.xi)
for name, lattice in lattices.items():
if not check_model(name, lattice.w, lattice.xi):
raise NameError("Wrong LB model!")
rho, vel, temp, tau, qflow = 1 + delta, delta*e_x, 1 + delta**2, delta*e_z, delta*e_x/2
print('Test #1: Maxwell distribution (rho=%g, vel_x=%g, temp=%g)' % (rho, vel[0], temp))
macro = Macro(rho, vel, temp)
for name, model in models.items():
print('-- %s model:' % name)
check_macro(model, model.Maxw(macro), macro)
print(''.join(['-' for i in range(50)]))
print('Test #2: Grad distribution (rho=%g, vel_x=%g, temp=%g, p_xy=%g)' % (rho, vel[0], temp, tau[2]))
macro = Macro(rho, vel, temp, tau)
for name, model in models.items():
print('-- %s model:' % name)
check_macro(model, model.Grad13(macro), macro)
print(''.join(['-' for i in range(50)]))
print('Test #3: Grad distribution (rho=%g, vel_x=%g, temp=%g, qflow_x=%g)' % (rho, vel[0], temp, qflow[0]))
macro = Macro(rho, vel, temp, qflow=qflow)
for name, model in models.items():
print('-- %s model:' % name)
check_macro(model, model.Grad13(macro), macro)
Macro = namedtuple('Macro', 'rho vel temp tau qflow')
Macro.__new__.__defaults__ = (1., zeros, 1., zeros, zeros)
Lattice = namedtuple('Lattice', 'xi w order')
# some constants for non-space filling lattices
q, Q = np.sqrt(15), np.sqrt(5)
r, s, t = np.sqrt((15+q)/2), np.sqrt(6-q), np.sqrt(9+2*q)
a1, b1, c1, d1 = 1.07182071542885, 1.21422495340964, 2.92338002226218, 2.49326392161601
a2, b2, c2, d2, e2, f2 = 1.45239166695403, 1.12267801869052, 1.37910253014295, 2.66422150193135, 2.40894358132745, 4.81788716265490
lattices = {
### Classical
# 3th order
'd3q8': lbm_d3(3, 1, [(1,1,1)], np.array([.125])),
# 5th order
'd3q15': lbm_d3(5, np.sqrt(3), [(0,0,0), (1,0,0), (1,1,1)], np.array([2, 1, .125])/9),
'd3q19': lbm_d3(5, np.sqrt(3), [(0,0,0), (1,0,0), (1,1,0)], np.array([3, 18, 36])**-1.),
'd3q27': lbm_d3(5, np.sqrt(3), [(0,0,0), (1,0,0), (1,1,0), (1,1,1)], np.array([8, 2, .5, .125])/27),
### Shan, Yuan, Chen 2006
# almost minimal of 7th order
'd3q39': lbm_d3(7, np.sqrt(1.5), [(0,0,0), (1,0,0), (1,1,1), (2,0,0), (2,2,0), (3,0,0)], [1./12, 1./12, 1./27, 2./135, 1./432, 1./1620]),
# minimal of 5th order (icosahedron)
'd3q13n': lbm_d3(5, 1, [(0,0,0), (np.sqrt((5-Q)/2),np.sqrt((5+Q)/2),0)], [ 2./5, 1./20 ], full=False),
### Nie, Shan, Chen 2008
'd3q121': lbm_d3(9, 1.19697977039307435897239, [(0,0,0), (1,0,0), (1,1,1), (1,2,0), (2,2,0), (3,0,0), (2,3,0), (2,2,2), (1,1,3), (3,3,3)],
[ 0.03059162202948600642469, 0.09851595103726339186467, 0.02752500532563812386479, 0.00611102336683342432241, 0.00042818359368108406618,
0.00032474752708807381296, 0.00001431862411548029405, 0.00018102175157637423759, 0.00010683400245939109491, 0.00000069287508963860285 ]),
### Feuchter, Schleifenbaum 2016
# 5th order
'd3v15': lbm_d3(5, 1.2247448713915890, [(0,0,0), (2,0,0), (1,1,1)], np.array([7, .5, 1])/18),
# minimal of 7th order
'd3v38': lbm_d3(7, 0.86602540378443865, [(1,0,0), (2,0,0), (2,2,2), (2,2,0), (6,0,0)],
[ 6.7724867724867725e-2, 5.5555555555555556e-2, 4.6296296296296296e-3, 1.8518518518518519e-2, 1.7636684303350970e-4 ]),
# 7th order
'd3v64': lbm_d3(7, 0.69965342816864754, [(2,0,0), (1,1,1), (5,0,0), (3,3,3), (3,3,0), (3,1,1)],
[ 5.9646397884737016e-3, 8.0827437008387392e-2, 1.1345266793939999e-3, 9.5680047874015889e-4, 3.9787631334632013e-3, 1.0641080987258957e-2 ]),
'd3v96': lbm_d3(7, 0.37787639086813054, [(1,1,1), (3,3,3), (3,1,1), (4,4,4), (7,1,1), (6,6,1)],
[ 1.2655649299880090e-3, 2.0050978770655310e-2, 2.7543347614356814e-2, 4.9712543563172566e-3, 3.6439016726158895e-3, 1.7168180273737716e-3 ]),
'd3v112': lbm_d3(7, 0.40531852273291520, [(1,1,1), (3,1,1), (4,4,4), (3,2,2), (7,1,1), (5,5,1)],
[ 3.3503407500643648e-3, 2.8894128958152456e-2, 4.5930345162087793e-3, 4.4163148398082762e-3, 2.3237070220062610e-3, 3.3847240912752922e-3 ]),
# minimal of 9th order
'd3v79': lbm_d3(9, 1, [(0,0,0), (1,0,0), (2,0,0), (1,1,1), (2,2,2), (2,2,0), (6,0,0), (3,3,3), (3,1,1)],
[ 1.0570987654320988e-1, 3.8095238095238095e-2, 2.8645833333333333e-2, 4.9479166666666667e-2, 5.2083333333333333e-4,
5.2083333333333333e-3, 2.7557319223985891e-6, 9.6450617283950617e-6, 1.3020833333333333e-3 ]),
### Stroud 1971 [ correct formulas in Ortiz 2007 (phd thesis), misprint for t in Shan, Yuan, Chen 2006 ]
# 7th order
'd3q27n': lbm_d3(7, 1, [(0,0,0), (r,0,0), (s,s,0), (t,t,t)], [ 8*(90+q)/2205, 2*(135-23*q)/15435, (162+41*q)/6174, (783-202*q)/24696]),
### Surmas, Ortiz, Philippi 2009
# almost 9th order (for moment xi^2 xi_a xi_b)
#'d3v33n': lbm_d3(8, 1, [(0,0,0), (a1,0,0), (b1,b1,b1), (c1,0,0), (d1,d1,0)],
# [ 1.69544317872168e-1, 7.53752058968985e-2, 3.90045337112442e-2, 6.86518217744201e-3, 2.08142366598628e-3 ]),
'd3v59': lbm_d3(8, 1.20288512331026, [(0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0), (2,2,0), (2,2,2), (3,0,0)],
[ 9.58789162377528e-2, 7.31047082129148e-2, 3.46588971093380e-3, 3.66108082044515e-2,
1.59235232232060e-2, 2.52480845105094e-3, 7.26968662515159e-5, 7.65879439346840e-4 ]),
# 9th order
'd3v53n': lbm_d3(9, 1, [(0,0,0), (a2,0,0), (b2,b2,b2), (c2,d2,0), (e2,e2,e2), (f2,0,0)],
[ 1.60453547343974e-1, 7.17493485726724e-2, 3.85210759331158e-2, 4.11522633744856e-3, 2.44958972443801e-4, 2.61083127915713e-5 ]),
'd3v107': lbm_d3(9, 1.07182071542885, [(0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0), (2,1,0), (2,2,0), (3,1,1), (2,2,2), (4,0,0)],
[ 7.57516860965017e-2, 6.00912802747447e-2, 3.13606906699535e-3, 3.63392812078012e-2, 1.32169332731492e-2,
4.48492851172950e-3, 2.48755775808342e-3, 6.07432754970149e-4, 4.64179164402822e-4, 4.51928894609872e-5 ]),
}
Model = namedtuple('Model', 'info weights xi c Maxw Grad13')
models = {
'dvm': dvm_grid(),
'lbm': lbm_grid()
}
Domain = namedtuple('Domain', 'y0 L model N q')
domains = (
Domain(0, fixed.L-args.width, models[args.model1], args.N1, 1.),
Domain(fixed.L-args.width, args.width, models[args.model2], args.N2, args.refinement**(-1./(args.N2-1)))
)
boundaries = (
[ ( Symmetry, {} ), ( Couple, { 'n_partner': 1, 'idx_partner': 0 }) ],
[ ( Couple, { 'n_partner': 0, 'idx_partner': -1 }), ( Diffuse, {}) ]
)
bcs = create_bcs()
norms = {
'L1': lambda f, g: np.einsum('ai->a', np.abs(f-g)),
'L2': lambda f, g: np.sqrt(np.einsum('ai->a', (f-g)**2)),
'Linf': lambda f, g: np.max(np.abs(f-g), axis=1)
}
class Solution(object):
def __init__(self, domain, initial):
empty = lambda model, N: np.empty((N,) + model.Maxw(Macro()).shape)
self.f = domain.model.Maxw(Macro(*initial(cells(domain)))) # distribution function
self.F = empty(domain.model, domain.N + 1) # fluxes between cells
self.f3 = empty(domain.model, 3) # ghost + 2 cells
print(''.join(['=' for i in range(50)]))
for m in models.values():
print('{}, total = {}, min_w = {:.2e}'.format(m.info, m.weights.size, np.min(m.weights)))
print('xi_max = %g, xi_y_type = %s' % (args.radius, args.grid))
print('k = %g, U = %g, cells = %d + %d' % (args.kn, args.U, args.N1, args.N2))
print('Model: (antisym)[ %s | %s ](diffuse), limiter = %s' % (args.model1, args.model2, args.limiter))
print('Width: |<-- %.3f -->|<-- %.3f -->|' % (fixed.L-args.width, args.width))
print('Delta_y: | %.4f | %.4f -- %.4f |' %
(delta_y(domains[0])[0], delta_y(domains[1])[0], delta_y(domains[1])[-1]))
print(''.join(['=' for i in range(50)]))
if args.tests:
tests()
else:
solve_bgk()