-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Training using our own dataset #771
Comments
我来分享一下如何训练自己的数据集以及如何标注点云获得3D标注框: 1.标注点云获得3D标注框 2.训练自己的数据集 import glob class CoilsDataset(DatasetTemplate):
以上是我的coils_dataset.py,此文件和kitti_dataset.py放在同一目录下。 DATASET: 'CoilsDataset' POINT_CLOUD_RANGE: [0, -40, -3, 70.4, 40, 1] DATA_SPLIT: { INFO_PATH: { GET_ITEM_LIST: ["points"] DATA_AUGMENTOR:
POINT_FEATURE_ENCODING: { DATA_PROCESSOR:
以上是我的coils_dataset.yaml,此文件和kitti_dataset.yaml放在同一目录下。 CLASS_NAMES: ['Coil'] DATA_CONFIG:
MODEL:
OPTIMIZATION:
以上是我的pointpillar.yaml,此文件放置在tools\cfgs\coils_models,去掉了gt_sampling数据增强,需要修改POINT_CLOUD_RANGE和VOXEL_SIZE,POINT_CLOUD_RANGE就是你的点云范围,相当于整个点云左下角xyz坐标和右上角xyz坐标,你也可以截取原始点云数据。 还需要修改一些代码: 基本上要写、要改的代码就是这些,然后我把train.py里评估的代码都删掉了。可以开始训练了! 训练完,找到生成的.pth文件,用它来测试一下效果,简单修改了一下demo.py: import argparse try: import numpy as np from pcdet.config import cfg, cfg_from_yaml_file class DemoDataset(DatasetTemplate):
def parse_config():
def main():
if name == 'main': 然后就可以看效果了! 最后,感谢OpenPCDet团队成员的辛勤付出,向你们致敬! |
@155cannon Many thanks for your kindly sharing! Hope you can also post this comments in this issue #253, which collect most discussion about "custom datasets". Also, it will be more helpful if you can post this with English, since it is more widely-used in our community. |
Hi,We encountered a problem when training Kitti dataset. No error was reported, but we can't train. #820 |
你好 @155cannon ,请问方便分享你更改后的源文件嘛?训练自己的数据集搞得我头昏脑胀,[email protected],这是我的邮箱,感谢! |
请问你是在windows下训练kitti的吗? |
我用PCTA做了一个小规模的数据集。想在ubuntu下用自己的数据集训练模型试试水,但是还不太清楚数据集该怎么处理。 |
hi 请问方便分享一下修改的完成源码吗?这个邮箱是我的邮箱[[email protected]]。 |
@155cannon 哈喽,您的代码可以实现训练,只是训练完成后没有性能评估,而且加上评估代码做训练会报错,请问您有做后续的修改吗?感谢~ |
性能评估的代码我没有看,加上评估代码做训练肯定会报错,所以去掉了性能评估。我不是搞学术科研的,单纯使用,直接看效果。 |
@155cannon |
收到谢谢
|
This issue is stale because it has been open for 30 days with no activity. |
@155cannon 你好,请问可以分享一下您的源文件吗,我在这方面遇到很多问题,谢谢。[email protected] |
@155cannon 请问您可以分享一下源文件吗?学术小白跪谢![email protected] |
@Christina-Soda @ghb0224 @ccsself @jeacwen @yun9993 @VsionQing |
您好,我在训练时遇到如下错误,请问您有遇到过吗? |
收到谢谢
|
|
This issue is stale because it has been open for 30 days with no activity. |
This issue was closed because it has been inactive for 14 days since being marked as stale. |
您好,你的问题解决了吗,我也遇到这个问题 |
大佬您好,请问可以分享一下源文件吗?这是我的邮箱[email protected],感谢! @155cannon |
I followed the instructions provided by @155cannon and received the error below when I tried to train the model. RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 1250 but got size 1252 for tensor number 2 in the list. point range and voxel size are set below. How to remove the error? |
You need to modify the point_cloud_range, please refer to docs/CUSTOM_DATASET_TUTORIAL.md,point cloud range along x&y-axis / voxel_size is the multiple of 16. @daofeng2007 |
大佬您好,请问可以分享一下源文件吗?这是我的邮箱[[email protected]](感谢! @155cannon |
Good evening,
First I would like to thank you for this project, I had a query regarding training using our own dataset. I see that in Demo you have shown how to use our own dataset of point cloud and save to numpy format and test it on a pre-trained model, is there a way we can train using our own dataset, if so could you please guide me as to how to do it,
Thanks for your help
The text was updated successfully, but these errors were encountered: