|
| 1 | +diff --git a/modules/python/test/test_fitline.py b/modules/python/test/test_fitline.py |
| 2 | +index 2197f8db7f..3a04708a68 100644 |
| 3 | +--- a/modules/python/test/test_fitline.py |
| 4 | ++++ b/modules/python/test/test_fitline.py |
| 5 | +@@ -55,7 +55,7 @@ class fitline_test(NewOpenCVTests): |
| 6 | + for name in dist_func_names: |
| 7 | + func = getattr(cv, name) |
| 8 | + vx, vy, cx, cy = cv.fitLine(np.float32(points), func, 0, 0.01, 0.01) |
| 9 | +- line = [float(vx), float(vy), float(cx), float(cy)] |
| 10 | ++ line = [vx[0], vy[0], cx[0], cy[0]] |
| 11 | + lines.append(line) |
| 12 | + |
| 13 | + eps = 0.05 |
| 14 | +diff --git a/modules/python/test/test_mser.py b/modules/python/test/test_mser.py |
| 15 | +index c76e9d4c79..596c82adb5 100644 |
| 16 | +--- a/modules/python/test/test_mser.py |
| 17 | ++++ b/modules/python/test/test_mser.py |
| 18 | +@@ -8,6 +8,7 @@ from __future__ import print_function |
| 19 | + |
| 20 | + import numpy as np |
| 21 | + import cv2 as cv |
| 22 | ++import random |
| 23 | + |
| 24 | + from tests_common import NewOpenCVTests |
| 25 | + |
| 26 | +@@ -31,19 +32,18 @@ class mser_test(NewOpenCVTests): |
| 27 | + [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
| 28 | + [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255] |
| 29 | + ] |
| 30 | +- thresharr = [ 0, 70, 120, 180, 255 ] |
| 31 | + kDelta = 5 |
| 32 | + mserExtractor = cv.MSER_create() |
| 33 | + mserExtractor.setDelta(kDelta) |
| 34 | +- np.random.seed(10) |
| 35 | ++ random.seed(10) |
| 36 | + |
| 37 | + for _i in range(100): |
| 38 | + |
| 39 | +- use_big_image = int(np.random.rand(1,1)*7) != 0 |
| 40 | +- invert = int(np.random.rand(1,1)*2) != 0 |
| 41 | +- binarize = int(np.random.rand(1,1)*5) != 0 if use_big_image else False |
| 42 | +- blur = int(np.random.rand(1,1)*2) != 0 |
| 43 | +- thresh = thresharr[int(np.random.rand(1,1)*5)] |
| 44 | ++ use_big_image = random.choice([True, False]) |
| 45 | ++ invert = random.choice([True, False]) |
| 46 | ++ binarize = random.choice([True, False]) if use_big_image else False |
| 47 | ++ blur = random.choice([True, False]) |
| 48 | ++ thresh = random.choice([0, 70, 120, 180, 255]) |
| 49 | + src0 = img if use_big_image else np.array(smallImg).astype('uint8') |
| 50 | + src = src0.copy() |
| 51 | + |
0 commit comments