|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "deletable": true, |
| 7 | + "editable": true |
| 8 | + }, |
| 9 | + "source": [ |
| 10 | + "# This demo notebook shows how you can load datasets for testing scripts.\n", |
| 11 | + "\n", |
| 12 | + "Opengrid comes with anonymous datasets gathered from dozens of (Belgian) dwellings. These dwellings have automatic meter reading for electricity, gas and or water. The data is resampled to minute values and can be loaded as shown below. " |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "metadata": { |
| 19 | + "collapsed": false, |
| 20 | + "deletable": true, |
| 21 | + "editable": true |
| 22 | + }, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "import pandas as pd\n", |
| 26 | + "import charts\n", |
| 27 | + "%matplotlib inline\n", |
| 28 | + "import matplotlib.pyplot as plt\n", |
| 29 | + "plt.rcParams['figure.figsize'] = 14,8" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "The data is stored in the folder */data*. Let's see what is available." |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": null, |
| 42 | + "metadata": { |
| 43 | + "collapsed": false, |
| 44 | + "deletable": true, |
| 45 | + "editable": true |
| 46 | + }, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "ls /data" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "metadata": {}, |
| 55 | + "source": [ |
| 56 | + "We load the hourly values for electricity " |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": { |
| 63 | + "collapsed": false, |
| 64 | + "deletable": true, |
| 65 | + "editable": true |
| 66 | + }, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "df_elec = pd.read_pickle('/data/electricity_2016_hour.pickle')\n", |
| 70 | + "df_elec.info()" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "markdown", |
| 75 | + "metadata": { |
| 76 | + "deletable": true, |
| 77 | + "editable": true |
| 78 | + }, |
| 79 | + "source": [ |
| 80 | + "We generate an interactive plot of the first 5 sensors for April 2016." |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": null, |
| 86 | + "metadata": { |
| 87 | + "collapsed": false, |
| 88 | + "deletable": true, |
| 89 | + "editable": true |
| 90 | + }, |
| 91 | + "outputs": [], |
| 92 | + "source": [ |
| 93 | + "df = df_elec.iloc[:,:5].loc['20160401':'20160501',:]\n", |
| 94 | + "charts.plot(df, stock=True, show='inline')" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "markdown", |
| 99 | + "metadata": {}, |
| 100 | + "source": [ |
| 101 | + "You can try to load and plot the other data yourself :-)" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "metadata": { |
| 108 | + "collapsed": true |
| 109 | + }, |
| 110 | + "outputs": [], |
| 111 | + "source": [] |
| 112 | + } |
| 113 | + ], |
| 114 | + "metadata": { |
| 115 | + "kernelspec": { |
| 116 | + "display_name": "Python 3", |
| 117 | + "language": "python", |
| 118 | + "name": "python3" |
| 119 | + }, |
| 120 | + "language_info": { |
| 121 | + "codemirror_mode": { |
| 122 | + "name": "ipython", |
| 123 | + "version": 3 |
| 124 | + }, |
| 125 | + "file_extension": ".py", |
| 126 | + "mimetype": "text/x-python", |
| 127 | + "name": "python", |
| 128 | + "nbconvert_exporter": "python", |
| 129 | + "pygments_lexer": "ipython3", |
| 130 | + "version": "3.5.2" |
| 131 | + } |
| 132 | + }, |
| 133 | + "nbformat": 4, |
| 134 | + "nbformat_minor": 0 |
| 135 | +} |
0 commit comments