|
| 1 | +// Example 19-2. Computing the fundamental matrix using RANSAC |
| 2 | +#include <opencv2/opencv.hpp> |
| 3 | +#include <iostream> |
| 4 | + |
| 5 | +using namespace std; |
| 6 | +void help(char *argv[]) { |
| 7 | + cout << "\nExample 19-2, Computing the fundamental matrix using RANSAC relating 2 images. Show the camera a checkerboard " |
| 8 | + << "\nCall" |
| 9 | + << "\n./example_19-2 <1:board_w> <2:board_h> <3:# of boards> <4:delay capture this many ms between frames> <5:scale the images 0-1>" |
| 10 | + << "\n\nExample call:" |
| 11 | + << "\n./example_19-2 12 12 20 500 0.5" |
| 12 | + << "\n" |
| 13 | + << endl; |
| 14 | +} |
| 15 | + |
| 16 | + |
| 17 | +// args: [board_w] [board_h] [number_of_boards] [delay]? [scale]? |
| 18 | +// |
| 19 | +int main(int argc, char *argv[]) { |
| 20 | + int n_boards = 0; |
| 21 | + float image_sf = 0.5f; |
| 22 | + float delay = 1.f; |
| 23 | + int board_w = 0; |
| 24 | + int board_h = 0; |
| 25 | + |
| 26 | + // Will be set by input list |
| 27 | + if (argc < 4 || argc > 6) { |
| 28 | + cout << "\nERROR: Wrong number of input parameters, need 5, got " << argc - 1 << "\n"; |
| 29 | + help(argv); |
| 30 | + return -1; |
| 31 | + } |
| 32 | + board_w = atoi(argv[1]); |
| 33 | + board_h = atoi(argv[2]); |
| 34 | + n_boards = atoi(argv[3]); |
| 35 | + delay = atof(argv[4]); |
| 36 | + image_sf = atof(argv[5]); |
| 37 | + int board_n = board_w * board_h; |
| 38 | + cv::Size board_sz = cv::Size(board_w, board_h); |
| 39 | + cv::VideoCapture capture(0); |
| 40 | + |
| 41 | + if (!capture.isOpened()) { |
| 42 | + cout << "\nCouldn't open the camera\n"; |
| 43 | + help(argv); |
| 44 | + return -1; |
| 45 | + } |
| 46 | + // Allocate Storage |
| 47 | + // |
| 48 | + vector<vector<cv::Point2f> > image_points; |
| 49 | + vector<vector<cv::Point3f> > object_points; |
| 50 | + // Capture corner views; loop until we've got n_boards number of |
| 51 | + // successful captures (meaning: all corners on each |
| 52 | + // board are found). |
| 53 | + // |
| 54 | + double last_captured_timestamp = 0; |
| 55 | + cv::Size image_size; |
| 56 | + while (image_points.size() < (size_t)n_boards) { |
| 57 | + cv::Mat image0, image; |
| 58 | + capture >> image0; |
| 59 | + image_size = image0.size(); |
| 60 | + resize(image0, image, cv::Size(), image_sf, image_sf, cv::INTER_LINEAR); |
| 61 | + // Find the board |
| 62 | + // |
| 63 | + vector<cv::Point2f> corners; |
| 64 | + bool found = cv::findChessboardCorners(image, board_sz, corners); |
| 65 | + // Draw it |
| 66 | + // |
| 67 | + cv::drawChessboardCorners(image, board_sz, corners, found); |
| 68 | + // If we got a good board, add it to our data |
| 69 | + // |
| 70 | + double timestamp = (double)clock() / CLOCKS_PER_SEC; |
| 71 | + if (found && timestamp - last_captured_timestamp > 1) { |
| 72 | + last_captured_timestamp = timestamp; |
| 73 | + image ^= cv::Scalar::all(255); |
| 74 | + |
| 75 | + cv::Mat mcorners(corners); |
| 76 | + // do not copy the data |
| 77 | + mcorners *= (1. / image_sf); |
| 78 | + // scale corner coordinates |
| 79 | + image_points.push_back(corners); |
| 80 | + object_points.push_back(vector<cv::Point3f>()); |
| 81 | + vector<cv::Point3f> &opts = object_points.back(); |
| 82 | + opts.resize(board_n); |
| 83 | + for (int j = 0; j < board_n; j++) { |
| 84 | + opts[j] = cv::Point3f((float)(j / board_w), (float)(j % board_w), 0.f); |
| 85 | + } |
| 86 | + cout << "Collected our " << (int)image_points.size() << " of " << n_boards |
| 87 | + << " needed chessboard images\n" << endl; |
| 88 | + } |
| 89 | + // in color if we did collect the image |
| 90 | + // |
| 91 | + cv::imshow("Calibration", image); |
| 92 | + if ((cv::waitKey(30) & 255) == 27) |
| 93 | + return -1; |
| 94 | + } |
| 95 | + // end collection while() loop. |
| 96 | + cv::destroyWindow("Calibration"); |
| 97 | + cout << "\n\n*** CALIBRATING THE CAMERA...\n" << endl; |
| 98 | + // Calibrate the camera! |
| 99 | + // |
| 100 | + cv::Mat intrinsic_matrix, distortion_coeffs; |
| 101 | + double err = cv::calibrateCamera( |
| 102 | + object_points, // Vector of vectors of points |
| 103 | + // from the calibration pattern |
| 104 | + image_points, // Vector of vectors of projected |
| 105 | + // locations (on images) |
| 106 | + image_size, // Size of images used |
| 107 | + intrinsic_matrix, // Output camera matrix |
| 108 | + distortion_coeffs, // Output distortion coefficients |
| 109 | + cv::noArray(), // We'll pass on the rotation vectors... |
| 110 | + cv::noArray(), // ...and the translation vectors |
| 111 | + cv::CALIB_ZERO_TANGENT_DIST | cv::CALIB_FIX_PRINCIPAL_POINT); |
| 112 | + |
| 113 | + // Save the intrinsics and distortions |
| 114 | + cout << " *** DONE!\n\nReprojection error is " << err |
| 115 | + << "\nStoring Intrinsics.xml and Distortions.xml files\n\n"; |
| 116 | + cv::FileStorage fs("intrinsics.xml", cv::FileStorage::WRITE); |
| 117 | + fs << "image_width" << image_size.width << "image_height" << image_size.height |
| 118 | + << "camera_matrix" << intrinsic_matrix << "distortion_coefficients" |
| 119 | + << distortion_coeffs; |
| 120 | + fs.release(); |
| 121 | + |
| 122 | + // Example of loading these matrices back in: |
| 123 | + // |
| 124 | + fs.open("intrinsics.xml", cv::FileStorage::READ); |
| 125 | + cout << "\nimage width: " << (int)fs["image_width"]; |
| 126 | + cout << "\nimage height: " << (int)fs["image_height"]; |
| 127 | + cv::Mat intrinsic_matrix_loaded, distortion_coeffs_loaded; |
| 128 | + fs["camera_matrix"] >> intrinsic_matrix_loaded; |
| 129 | + fs["distortion_coefficients"] >> distortion_coeffs_loaded; |
| 130 | + cout << "\nintrinsic matrix:" << intrinsic_matrix_loaded; |
| 131 | + cout << "\ndistortion coefficients: " << distortion_coeffs_loaded << endl; |
| 132 | + |
| 133 | + // Compute Fundamental Matrix Between the first |
| 134 | + // and the second frames: |
| 135 | + // |
| 136 | + cv::undistortPoints( |
| 137 | + image_points[0], // Observed point coordinates (from frame 0) |
| 138 | + image_points[0], // undistorted coordinates (in this case, |
| 139 | + // the same array as above) |
| 140 | + intrinsic_matrix, // Intrinsics, from cv::calibrateCamera() |
| 141 | + distortion_coeffs, // Distortion coefficients, also |
| 142 | + // from cv::calibrateCamera() |
| 143 | + cv::Mat(), // Rectification transformation (but |
| 144 | + // here, we don't need this) |
| 145 | + intrinsic_matrix // New camera matrix |
| 146 | + ); |
| 147 | + |
| 148 | + cv::undistortPoints( |
| 149 | + image_points[1], // Observed point coordinates (from frame 1) |
| 150 | + image_points[1], // undistorted coordinates (in this case, |
| 151 | + // the same array as above) |
| 152 | + intrinsic_matrix, // Intrinsics, from cv::calibrateCamera() |
| 153 | + distortion_coeffs, // Distortion coefficients, also |
| 154 | + // from cv::calibrateCamera() |
| 155 | + cv::Mat(), // Rectification transformation (but |
| 156 | + // here, we don't need this) |
| 157 | + intrinsic_matrix // New camera matrix |
| 158 | + ); |
| 159 | + |
| 160 | + // Since all the found chessboard corners are inliers, i.e., they |
| 161 | + // must satisfy epipolar constraints, here we are using the |
| 162 | + // fastest, and the most accurate (in this case) 8-point algorithm. |
| 163 | + // |
| 164 | + cv::Mat F = cv::findFundamentalMat( // Return computed matrix |
| 165 | + image_points[0], // Points from frame 0 |
| 166 | + image_points[1], // Points from frame 1 |
| 167 | + cv::FM_8POINT // Use the 8-point algorithm |
| 168 | + ); |
| 169 | + cout << "Fundamental matrix: " << F << endl; |
| 170 | + |
| 171 | + // Build the undistort map which we will use for all |
| 172 | + // subsequent frames. |
| 173 | + // |
| 174 | + cv::Mat map1, map2; |
| 175 | + cv::initUndistortRectifyMap( |
| 176 | + intrinsic_matrix_loaded, // Our camera matrix |
| 177 | + distortion_coeffs_loaded, // Our distortion coefficients |
| 178 | + cv::Mat(), // (Optional) Rectification, don't |
| 179 | + // need. |
| 180 | + intrinsic_matrix_loaded, // "New" matrix, here it's the same |
| 181 | + // as the first argument. |
| 182 | + image_size, // Size of undistorted image we want |
| 183 | + CV_16SC2, // Specifies the format of map to use |
| 184 | + map1, // Integerized coordinates |
| 185 | + map2 // Fixed-point offsets for |
| 186 | + // elements of map1 |
| 187 | + ); |
| 188 | + |
| 189 | + // Just run the camera to the screen, now showing the raw and |
| 190 | + // the undistorted image. |
| 191 | + // |
| 192 | + for (;;) { |
| 193 | + cv::Mat image, image0; |
| 194 | + capture >> image0; |
| 195 | + if (image0.empty()) |
| 196 | + break; |
| 197 | + cv::remap(image0, // Input image |
| 198 | + image, // Output image |
| 199 | + map1, // Integer part of map |
| 200 | + map2, // Fixed point part of map |
| 201 | + cv::INTER_LINEAR, cv::BORDER_CONSTANT, |
| 202 | + cv::Scalar() // Set border values to black |
| 203 | + ); |
| 204 | + cv::imshow("Undistorted", image); |
| 205 | + if ((cv::waitKey(30) & 255) == 27) |
| 206 | + break; |
| 207 | + } |
| 208 | + return 1; |
| 209 | +} |
0 commit comments