-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathlora.py
35 lines (28 loc) · 1.16 KB
/
lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from config import *
import torch
from torch import nn
import math
# Lora实现,封装linear,替换到父module里
class LoraLayer(nn.Module):
def __init__(self,raw_linear,in_features,out_features,r,alpha):
super().__init__()
self.r=r
self.alpha=alpha
self.lora_a=nn.Parameter(torch.empty((in_features,r)))
self.lora_b=nn.Parameter(torch.zeros((r,out_features)))
nn.init.kaiming_uniform_(self.lora_a,a=math.sqrt(5))
self.raw_linear=raw_linear
def forward(self,x): # x:(batch_size,in_features)
raw_output=self.raw_linear(x)
lora_output=x@(([email protected]_b)*self.alpha/self.r) # matmul(x,matmul(lora_a,lora_b)*alpha/r)
return raw_output+lora_output
def inject_lora(model,name,layer):
name_cols=name.split('.')
# 逐层下探到linear归属的module
children=name_cols[:-1]
cur_layer=model
for child in children:
cur_layer=getattr(cur_layer,child)
#print(layer==getattr(cur_layer,name_cols[-1]))
lora_layer=LoraLayer(layer,layer.in_features,layer.out_features,LORA_R,LORA_ALPHA)
setattr(cur_layer,name_cols[-1],lora_layer)