@@ -163,11 +163,6 @@ def fit_step(self, avoidPoints=None, fitWithTrainingDataIfContains=None):
163163 with open (self .fileOutputs , "a" ) as f :
164164 f .write (f" (took total of { txt_time } )" )
165165
166- embed ()
167- x = torch .rand (10_000 , self .train_X .shape [- 1 ]).to (self .dfT )
168- with IOtools .speeder ("/Users/pablorf/PROJECTS/project_2024_PORTALSdevelopment/speed/profiler_gp64.prof" ) as s :
169- self .GP ["combined_model" ].gpmodel .posterior (x )
170-
171166 def _fit_multioutput_model (self ):
172167
173168 surrogateOptions = self .surrogateOptions ["selectSurrogate" ]('AllMITIM' , self .surrogateOptions )
@@ -359,7 +354,7 @@ def defineFunctions(self, scalarized_objective):
359354 I create this so that, upon reading a pickle, I re-call it. Otherwise, it is very heavy to store lambdas
360355 """
361356
362- self .evaluators = {"GP" : self .GP ["combined_model " ]}
357+ self .evaluators = {"GP" : self .GP ["mo_model " ]}
363358
364359 # **************************************************************************************************
365360 # Objective (multi-objective model -> single objective residual)
@@ -442,14 +437,6 @@ def residual(Y, X = None):
442437 )
443438 )
444439
445-
446- embed ()
447- x = torch .rand (64 , self .train_X .shape [- 1 ]).to (self .dfT )
448- with IOtools .speeder ("/Users/pablorf/PROJECTS/project_2024_PORTALSdevelopment/speed/profiler_acq64.prof" ) as s :
449- self .evaluators ["acq_function" ](x )
450-
451-
452-
453440 # **************************************************************************************************
454441 # Quick function to return components (I need this for ROOT too, since I need the components)
455442 # **************************************************************************************************
0 commit comments