Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
>>> import pandas as pd
>>> from datetime import datetime
>>> pd.to_numeric(datetime(2021, 8, 22), errors="coerce")
nan
>>> pd.to_numeric(pd.Series(datetime(2021, 8, 22)), errors="coerce")
0 1629590400000000000
dtype: int64
>>> pd.Series([datetime(2021, 8, 22)]).apply(partial(pd.to_numeric), errors="coerce")
0 NaN
dtype: float64
>>>
>>> pd.to_numeric(pd.NaT, errors="coerce")
nan
>>> pd.to_numeric(pd.Series(pd.NaT), errors="coerce")
0 -9223372036854775808
dtype: int64
>>> pd.Series([pd.NaT]).apply(partial(pd.to_numeric), errors="coerce")
0 NaN
dtype: float64
Problem description
When using pd.to_numeric
to convert a pd.Series
with dtype datetime64[ns]
, it returns different values than converting the series value by value
Expected Output
Converting a pd.Series
as a whole should be the same than converting it value by value.
I am not sure about what the correct output should be, but IMO the output should be consistent in these two scenarios.
What I suggest:
- For no-null values, returns the same value. Maybe the integer?
- For
pd.NaT
, always returnsnp.NaN
Output of pd.show_versions()
I am using the latest version of master
until today
INSTALLED VERSIONS
commit : e39ea30
python : 3.8.3.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Tue Jun 22 19:49:55 PDT 2021; root:xnu-6153.141.35~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : en_US.UTF-8
pandas : 1.4.0.dev0+517.gc3761e24d8
numpy : 1.18.5
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 49.2.0.post20200714
Cython : 0.29.21
pytest : 5.4.3
hypothesis : None
sphinx : 3.1.2
blosc : None
feather : None
xlsxwriter : 1.2.9
lxml.etree : 4.5.2
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: None
bs4 : 4.9.1
bottleneck : 1.3.2
fsspec : 0.7.4
fastparquet : None
gcsfs : None
matplotlib : 3.2.2
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.4
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.5.0
sqlalchemy : 1.3.18
tables : 3.6.1
tabulate : 0.8.9
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.50.1